Araştırma Makalesi
BibTex RIS Kaynak Göster

HYBRID ESTIMATOR BASED DIRECT VECTOR CONTROL OF IM WITH SPEED-SENSOR

Yıl 2018, Cilt: 7 Sayı: 2, 612 - 623, 20.07.2018
https://doi.org/10.28948/ngumuh.443233

Öz

In
this study, a hybrid estimator based speed-sensored direct vector control (DVC)
of induction motor (IM) is implemented in simulation for electrical vehicle
drive system applications. The proposed estimator is composed of stochastic
based extended Kalman filter (EKF) and online magnetizing inductance estimation
method. In hybrid estimation method, stator stationary axis components (αβ) of stator current (
 and ), αβ- axis components of rotor flux ( and ),
rotor and stator resistances (
 and )are
estimated by EKF and the changes of magnetizing inductance are determined by
online magnetizing inductance estimation method. The estimation performance of
the hybrid estimation method which is implemented with DVC in simulation
platform and the control performance of DVC are tested at a wide speed range
varying from zero speed to beyond the rated/based speed defined as field
weakening region in the literature under the challenging variations of
parameters and states. The results obtained from the simulation show that the
proposed hybrid estimator has a very high performance. Also the speed-sensored
DVC has been gained the ability to have high control performance over a wide
speed range.

Kaynakça

  • [1] LEE, SH., YOO, A., LEE, HJ., YOON, YD., HAN, BM., "Identification of Induction Motor Parameters at Standstill Based on Integral Calculation", IEEE Transactions on Industry Applications, 53(3): 2130–2139, 2017.
  • [2] FARASAT, M., TRZYNADLOWSKI, AM., FADALI, MS., "Efficiency improved sensorless control scheme for electric vehicle induction motors", IET Electrical Systems in Transportation, 4(4), 122–131, 2014.
  • [3] TOLIYAT, HA., LEVI, E., RAINA, M., "A review of RFO induction motor parameter estimation techniques", IEEE Transactions on Energy Conversion, 18(2), 271–283, 2003.
  • [4] INAN, R., BARUT, M., "Bi input-extended Kalman filter-based speed-sensorless control of an induction machine~capable of working in the field-weakening region", Turkish Journal Of Electrical Engineering & Computer Sciences, 22, 588–604, 2014.
  • [5] LEE, H., WOLDESEMAYAT, ML., NAM, K., "Zero Torque Control for EV Coasting Considering Cross-Coupling Inductance", IEEE Transactions on Industrial Electronics, 64(8), 6096–6104, 2017.
  • [6] LIU, Y., ZHAO, J., WANG, R., HUANG, C., "Performance Improvement of Induction Motor Current Controllers in Field-Weakening Region for Electric Vehicles", IEEE Transactions on Power Electronics, 28(5), 2468–2482, 2013.
  • [7] SALMASI, FR., NAJAFABADI, TA., "An Adaptive Observer With Online Rotor and Stator Resistance Estimation for Induction Motors With One Phase Current Sensor", IEEE Transactions on Energy Conversion, 26(3), 959–966, 2011.
  • [8] SHINOHARA, K., NAGANO, T., ARIMA, H., MUSTAFA, W. Z. W., "Online tuning method of stator and rotor resistances in both motoring and regenerating operations for vector-controlled induction machines", Electrical Engineering in Japan, 135(1), 199–205, 2001.
  • [9] KARANAYIL, B., RAHMAN, MF., GRANTHAM, C., "Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks", IEEE Transactions on Energy Conversion, 20(4), 771–780, 2005.
  • [10] TALLA, J., PEROUTKA, Z., BLAHNIK, V., STREIT, L., "Rotor and stator resistance estimation of induction motor based on augmented EKF", 2015 International Conference on Applied Electronics (AE), 253-258, Pilsen, Czech Republic, 2015.
  • [11] KAN, J., ZHANG, K., WANG, Z., "Indirect vector control with simplified rotor resistance adaptation for induction machines", IET Power Electronics, 8(7), 1284–1294, 2015.
  • [12] MAPELLI, FL., TARSITANO, D., CHELI, F., "MRAS rotor resistance estimators for EV vector controlled induction motor traction drive: Analysis and experimental results", Electric Power Systems Research, 146(Supplement C), 298–307, 2017.
  • [13] KENNE, G., AHMED-ALI, T., LAMNABHI-LAGARRIGUE, F., ARZANDE, A., "Real-Time Speed and Flux Adaptive Control of Induction Motors Using Unknown Time-Varying Rotor Resistance and Load Torque", IEEE Transactions on Energy Conversion, 24(2), 375–387, 2009.
  • [14] DEMIR, R., BARUT, M., YILDIZ, R., INAN, R., ZERDALI, E., "EKF based rotor and stator resistance estimations for direct torque control of Induction Motors", 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), 376-381, Brasov, Romania, 2017.
  • [15] DEMIR, R., BARUT, M., YILDIZ, R., ZERDALI, E., INAN, R., "Asenkron Motorların hız-algılayıcılı Doğrudan Vektör Kontrolü için İndirgenmiş Dereceli Genişletilmiş Kalman Fitresi Tabanlı Stator ve Rotor Direnci Kestirimi", 1. Ulusal Elektrik Enerjisi Dönüşümü Kongresi, 189-193, Elazığ, Türkiye, 2017.
  • [16] DEMIR, R., BARUT, M., YILDIZ, R., "Asenkron Motorların Hız-Algılayıcılı Doğrudan Vektör Kontrolü için İndirgenmiş Dereceli Genişletilmiş Kalman Fitresi Tabanlı Parametre Kestirimi", Otomatik Kontrol Ulusal Toplantısı TOK 2017, 562-567, İstanbul, Türkiye, 2017.
  • [17] BELLINI, A., BIFARETTI, S., "A method for magnetizing curve identification in vector controlled induction motor drives", International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2006), 955-959, Taormina, Italy, 2006
  • [18] BERTOLUZZO, M., BUJA, GS., MENIS, R., "Self-commissioning of RFO IM drives: one-test identification of the magnetization characteristic of the motor", IEEE Transactions on Industry Applications, 37(6), 1801–1806, 2001.
  • [19] BUNTE, A., GROTSTOLLEN, H., KRAFKA, P., "Field weakening of induction motors in a very wide region with regard to parameter uncertainties", PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, 944-950, Baveno, Italy, 1996.
  • [20] KLAES, NR., "Parameter identification of an induction machine with regard to dependencies on saturation", IEEE Transactions on Industry Applications, 29(6), 1135–1140, 1993.
  • [21] WANG, K., YAO, W., CHEN, B., SHEN, G., LEE, K., LU, Z., "Magnetizing Curve Identification for Induction Motors at Standstill Without Assumption of Analytical Curve Functions", IEEE Transactions on Industrial Electronics, 62(4), 2144–2155, 2015.
  • [22] LEVI, E., SOKOLA, M., VUKOSAVIC, SN., "A method for magnetizing curve identification in rotor flux oriented induction machines", IEEE Transactions on Energy Conversion, 15(2), 157–162, 2000.
  • [23] ZAKY, MS., KHATER, M., YASIN, H., SHOKRALLA, SS., "Speed-Sensorless Control of Induction Motor Drives (Review Paper)", Acta Electrotechnica, 49(3), 251–268, 2008.
  • [24] ZAKY, MS., KHATER, MM., SHOKRALLA, SS., YASIN, HA., "Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives", IEEE Transactions on Industrial Electronics, 56(5), 1699–1707, 2009.
  • [25] DYBKOWSKI, M., ORLOWSKA-KOWALSKA, T., "Speed sensorless induction motor drive with magnetizing reactance estimation", Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC, T5-120-T5-125, Ohrid, Macedonia, 2010.
  • [26] ERMIS, M., CAKIR, Z., CADIRCI, I., ZENGINOBUZ, G., TEZCAN, H., "Self-excitation of induction motors compensated by permanently connected capacitors and recommendations for IEEE std 141-1993", IEEE Transactions on Industry Applications, 39(2), 313–324, 2003.
  • [27] BARUT, M., DEMIR, R., ZERDALI, E., INAN, R., "Real-Time Implementation of Bi Input-Extended Kalman Filter-Based Estimator for Speed-Sensorless Control of Induction Motors", IEEE Transactions on Industrial Electronics, 59(11), 4197–4206, 2012.

ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ

Yıl 2018, Cilt: 7 Sayı: 2, 612 - 623, 20.07.2018
https://doi.org/10.28948/ngumuh.443233

Öz

Bu
çalışmada, asenkron motorlar  (ASM’ler)
için hız-algılayıcılı karma (hibrid) kestirim algoritması tabanlı doğrudan
vektör kontrol (DVK) yöntemi benzetim ortamında tasarlanarak
gerçekleştirilmiştir. Önerilen karma kestirim yönteminde stator akımının stator
duran eksen takımı (αβ) bileşenleri (
 ve ),
rotor akısının αβ- bileşenleri (
 ve ),
rotor direnci (
) ve
stator direnci (
) GKF
ile kestirilirken; mıknatıslama endüktansı (
) ise
çevrim-içi
-kestiricisi
ile kestirilmektedir. Önerilen karma kestirim algoritmasının kestirim ve bu
algoritmanın kullanıldığı DVK sisteminin kontrol başarımları; sıfır hız ile
anma hızının üzerindeki alan zayıflama bölgesini de kapsayan geniş bir hız
aralığında oldukça zorlayıcı parametre ve durum değişimleri altında benzetim
temelli test edilmiştir. Benzetim ortamından elde edilen sonuçlar önerilen
karma kestiricinin ve bu yüzden DVK sisteminin oldukça yüksek bir başarıma
sahip olduğunu göstermektedir. Bu yönleri ile literatürde bilinen ilk
çalışmadır.

Kaynakça

  • [1] LEE, SH., YOO, A., LEE, HJ., YOON, YD., HAN, BM., "Identification of Induction Motor Parameters at Standstill Based on Integral Calculation", IEEE Transactions on Industry Applications, 53(3): 2130–2139, 2017.
  • [2] FARASAT, M., TRZYNADLOWSKI, AM., FADALI, MS., "Efficiency improved sensorless control scheme for electric vehicle induction motors", IET Electrical Systems in Transportation, 4(4), 122–131, 2014.
  • [3] TOLIYAT, HA., LEVI, E., RAINA, M., "A review of RFO induction motor parameter estimation techniques", IEEE Transactions on Energy Conversion, 18(2), 271–283, 2003.
  • [4] INAN, R., BARUT, M., "Bi input-extended Kalman filter-based speed-sensorless control of an induction machine~capable of working in the field-weakening region", Turkish Journal Of Electrical Engineering & Computer Sciences, 22, 588–604, 2014.
  • [5] LEE, H., WOLDESEMAYAT, ML., NAM, K., "Zero Torque Control for EV Coasting Considering Cross-Coupling Inductance", IEEE Transactions on Industrial Electronics, 64(8), 6096–6104, 2017.
  • [6] LIU, Y., ZHAO, J., WANG, R., HUANG, C., "Performance Improvement of Induction Motor Current Controllers in Field-Weakening Region for Electric Vehicles", IEEE Transactions on Power Electronics, 28(5), 2468–2482, 2013.
  • [7] SALMASI, FR., NAJAFABADI, TA., "An Adaptive Observer With Online Rotor and Stator Resistance Estimation for Induction Motors With One Phase Current Sensor", IEEE Transactions on Energy Conversion, 26(3), 959–966, 2011.
  • [8] SHINOHARA, K., NAGANO, T., ARIMA, H., MUSTAFA, W. Z. W., "Online tuning method of stator and rotor resistances in both motoring and regenerating operations for vector-controlled induction machines", Electrical Engineering in Japan, 135(1), 199–205, 2001.
  • [9] KARANAYIL, B., RAHMAN, MF., GRANTHAM, C., "Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks", IEEE Transactions on Energy Conversion, 20(4), 771–780, 2005.
  • [10] TALLA, J., PEROUTKA, Z., BLAHNIK, V., STREIT, L., "Rotor and stator resistance estimation of induction motor based on augmented EKF", 2015 International Conference on Applied Electronics (AE), 253-258, Pilsen, Czech Republic, 2015.
  • [11] KAN, J., ZHANG, K., WANG, Z., "Indirect vector control with simplified rotor resistance adaptation for induction machines", IET Power Electronics, 8(7), 1284–1294, 2015.
  • [12] MAPELLI, FL., TARSITANO, D., CHELI, F., "MRAS rotor resistance estimators for EV vector controlled induction motor traction drive: Analysis and experimental results", Electric Power Systems Research, 146(Supplement C), 298–307, 2017.
  • [13] KENNE, G., AHMED-ALI, T., LAMNABHI-LAGARRIGUE, F., ARZANDE, A., "Real-Time Speed and Flux Adaptive Control of Induction Motors Using Unknown Time-Varying Rotor Resistance and Load Torque", IEEE Transactions on Energy Conversion, 24(2), 375–387, 2009.
  • [14] DEMIR, R., BARUT, M., YILDIZ, R., INAN, R., ZERDALI, E., "EKF based rotor and stator resistance estimations for direct torque control of Induction Motors", 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), 376-381, Brasov, Romania, 2017.
  • [15] DEMIR, R., BARUT, M., YILDIZ, R., ZERDALI, E., INAN, R., "Asenkron Motorların hız-algılayıcılı Doğrudan Vektör Kontrolü için İndirgenmiş Dereceli Genişletilmiş Kalman Fitresi Tabanlı Stator ve Rotor Direnci Kestirimi", 1. Ulusal Elektrik Enerjisi Dönüşümü Kongresi, 189-193, Elazığ, Türkiye, 2017.
  • [16] DEMIR, R., BARUT, M., YILDIZ, R., "Asenkron Motorların Hız-Algılayıcılı Doğrudan Vektör Kontrolü için İndirgenmiş Dereceli Genişletilmiş Kalman Fitresi Tabanlı Parametre Kestirimi", Otomatik Kontrol Ulusal Toplantısı TOK 2017, 562-567, İstanbul, Türkiye, 2017.
  • [17] BELLINI, A., BIFARETTI, S., "A method for magnetizing curve identification in vector controlled induction motor drives", International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2006), 955-959, Taormina, Italy, 2006
  • [18] BERTOLUZZO, M., BUJA, GS., MENIS, R., "Self-commissioning of RFO IM drives: one-test identification of the magnetization characteristic of the motor", IEEE Transactions on Industry Applications, 37(6), 1801–1806, 2001.
  • [19] BUNTE, A., GROTSTOLLEN, H., KRAFKA, P., "Field weakening of induction motors in a very wide region with regard to parameter uncertainties", PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, 944-950, Baveno, Italy, 1996.
  • [20] KLAES, NR., "Parameter identification of an induction machine with regard to dependencies on saturation", IEEE Transactions on Industry Applications, 29(6), 1135–1140, 1993.
  • [21] WANG, K., YAO, W., CHEN, B., SHEN, G., LEE, K., LU, Z., "Magnetizing Curve Identification for Induction Motors at Standstill Without Assumption of Analytical Curve Functions", IEEE Transactions on Industrial Electronics, 62(4), 2144–2155, 2015.
  • [22] LEVI, E., SOKOLA, M., VUKOSAVIC, SN., "A method for magnetizing curve identification in rotor flux oriented induction machines", IEEE Transactions on Energy Conversion, 15(2), 157–162, 2000.
  • [23] ZAKY, MS., KHATER, M., YASIN, H., SHOKRALLA, SS., "Speed-Sensorless Control of Induction Motor Drives (Review Paper)", Acta Electrotechnica, 49(3), 251–268, 2008.
  • [24] ZAKY, MS., KHATER, MM., SHOKRALLA, SS., YASIN, HA., "Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives", IEEE Transactions on Industrial Electronics, 56(5), 1699–1707, 2009.
  • [25] DYBKOWSKI, M., ORLOWSKA-KOWALSKA, T., "Speed sensorless induction motor drive with magnetizing reactance estimation", Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC, T5-120-T5-125, Ohrid, Macedonia, 2010.
  • [26] ERMIS, M., CAKIR, Z., CADIRCI, I., ZENGINOBUZ, G., TEZCAN, H., "Self-excitation of induction motors compensated by permanently connected capacitors and recommendations for IEEE std 141-1993", IEEE Transactions on Industry Applications, 39(2), 313–324, 2003.
  • [27] BARUT, M., DEMIR, R., ZERDALI, E., INAN, R., "Real-Time Implementation of Bi Input-Extended Kalman Filter-Based Estimator for Speed-Sensorless Control of Induction Motors", IEEE Transactions on Industrial Electronics, 59(11), 4197–4206, 2012.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği
Yazarlar

Remzi İnan 0000-0003-1717-3875

Rıdvan Demir Bu kişi benim 0000-0001-6509-9169

Murat Barut Bu kişi benim 0000-0001-6798-0654

Yayımlanma Tarihi 20 Temmuz 2018
Gönderilme Tarihi 3 Ocak 2018
Kabul Tarihi 12 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 2

Kaynak Göster

APA İnan, R., Demir, R., & Barut, M. (2018). ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2), 612-623. https://doi.org/10.28948/ngumuh.443233
AMA İnan R, Demir R, Barut M. ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ. NÖHÜ Müh. Bilim. Derg. Temmuz 2018;7(2):612-623. doi:10.28948/ngumuh.443233
Chicago İnan, Remzi, Rıdvan Demir, ve Murat Barut. “ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, sy. 2 (Temmuz 2018): 612-23. https://doi.org/10.28948/ngumuh.443233.
EndNote İnan R, Demir R, Barut M (01 Temmuz 2018) ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 2 612–623.
IEEE R. İnan, R. Demir, ve M. Barut, “ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ”, NÖHÜ Müh. Bilim. Derg., c. 7, sy. 2, ss. 612–623, 2018, doi: 10.28948/ngumuh.443233.
ISNAD İnan, Remzi vd. “ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/2 (Temmuz 2018), 612-623. https://doi.org/10.28948/ngumuh.443233.
JAMA İnan R, Demir R, Barut M. ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ. NÖHÜ Müh. Bilim. Derg. 2018;7:612–623.
MLA İnan, Remzi vd. “ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 7, sy. 2, 2018, ss. 612-23, doi:10.28948/ngumuh.443233.
Vancouver İnan R, Demir R, Barut M. ASENKRON MOTORUN KARMA KESTİRİCİ TABANLI HIZ-ALGILAYICILI DOĞRUDAN VEKTÖR KONTROLÜ. NÖHÜ Müh. Bilim. Derg. 2018;7(2):612-23.

 23135