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Abstract 
 
The design of fractional-order filters using Current Feedback Operational Amplifiers as active elements, is presented in 
this paper. The first step of the procedure is the approximation of the fractional-order transfer function by an appropriate 
integer-order function and the derivation of the corresponding Functional Block Diagram. As a second step, the 
implementation of the derived Functional Block Diagram is performed through the utilization of integration and 
summation blocks constructed from Current Feedback Operational Amplifiers. As a design example, a 1+a order 
(0<a<1) lowpass filter has been realized and its behaviour has been evaluated through experimental results using the 
commercially available AD844 discrete IC component as Current Feedback Operational Amplifier. 
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1. Introduction 
 
The growing research interest for employing the concept of 
fractional calculus in electronic engineering is mainly 
originated from the interdisciplinary nature of this research 
area.  For example, the modeling of viscoelasticity as well as 
of biological cells and tissues has been performed through 
the utilization of the fractional-order calculus. Biological 
signals such as electrocardiograms (ECG) and 
electroencephalographs (EEG) have spectra that do not 
increase or decrease by multiples of ±6 dB/octave but by 
multiples of ±6⋅a dB/octave (0<a<1). In addition, the 
capability for precisely controlling the attenuation gradient 
in fractional-order filters in comparison with the 
corresponding integer-order filters is an attractive feature.  
 Fractional Order Elements (FOEs) are the main building 
blocks for performing signal processing according to the 
fractional calculus. Unfortunately, these elements are not 
commercially available and, thus, FOEs are approximated by 
appropriately configured RC networks. Following this 
approach a number of voltage-mode filters where 
Operational Amplifiers (Op-Amps), second-generation 
Current Conveyors (CCIIs), and Current Feedback 
Operational Amplifiers (CFOAs) are employed as active 
elements have been proposed in the literature. A drawback 
of these topologies is the employment of floating resistors 
and capacitors [1-12].   
 Another solution for realizing fractional-order filters is 
the approximation of their transfer function by a suitable 
integer-order filter function [13-17]. In [13] the realization 
of fractional order filters has been performed by employing a 
cascade connection of first and second-order filters sections 
which were available through a Field Programmable Analog 
Array (FPAA). As a result, the resulted filter topologies will 

suffer from increased sensitivity with respect to the effect of 
component variations. An alternative approach has been 
introduced in [14], where the fractional-order filters have 
been implemented through a cascade of first and second-
order filter sections realized via parallel RC network and 
Single Amplifier Biquad (SAB).    
 A systematic design procedure for designing voltage-
mode fractional-order filters is presented in this paper. The 
utilized active cell is the Current Feedback Operational 
Amplifier (CFOA), due to its versatility and design 
flexibility. As a result, the most attractive feature of the 
resulted filter topologies is the requirement for only 
grounded resistors and capacitors. The paper is organized as 
follows: the design procedure is presented in a systematic 
way in Section 2, while the derived fractional-order filter 
topology using CFOAs as active elements is given in 
Section 3. The behaviour of the proposed filter is evaluated, 
through experimental results, using the commercially 
available AD844 discrete IC component in Section 4. 
 
 
2. Design procedure for fractional-order filters  
 
2.1. Lowpass fractional filters with order 1+a (0<a <1) 
According to the analysis provided in [13-14], the direct 
realization of a fractional filter of order n+a is stable only in 
the case that n+a<2. Therefore, only 1+a order fractional 
filters realizations offer stability. The transfer function of a 
fractional lowpass filter is given by (1) as: 
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The low-frequency gain is equal to K1/K2, and the half-
power frequency is given by (2) as 
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 The obtained frequency responses suffer from the 
presence of an undesired peaking equal to 
K1/{K2⋅[(sin(1+a)π/2]}at frequency ωp={-K2⋅[cos(1+a)π/2]}-

(1+a). In order to overcome this problem, the modified 
transfer function given by (3) will be employed, which 
intends to approximate the all-pole Butterworth response by 
introducing an extra term equal to K3sa  in the denominator 
of the transfer function in (1) 
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 The factors Ki in (3) are given by the expressions in (4), 
which are derived through an appropriate algorithm for 
minimizing the errors in the frequency response [13] 
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 An efficient approximation of the term sa, with regards 
to circuit complexity, is the second-order expression given 
by (5), which is derived according to the Continued Fraction 
Expansion (CFE) formula [8], [13] 
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The expressions for the terms ao, a1, a2 are given by (6) 
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 Substituting (6) into (3) the transfer function of the 
lowpass filter with Butterworth characteristics becomes as in 
(7) 
 

( )
01

2
2

3
01

2
2

0

1
1 bsbsbs

asasa
a
KsH LP

a +++
++

≅+

                                             (7), 

 where 
 

0

3220
0 a

KaKab +
=                                                                  (8a) 

 
( )

0

2321
1 a

aKKab ++
=

                                                             (8b) 

 

0

22301
2 a

KaKaab ++
=

                                                           (8c), 

 
and the values of ao, a1, a2 are determined by (6). 
 
 A way for realizing the integer-order transfer function in 
(7), which approximates a fractional-order filter of order 
1+a, is using the Functional Block Diagram (FBD) of the 

Follow the Leader Feedback (FLF) topology depicted in Fig. 
1.The transfer function is given by (9) as 
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Fig. 1. FBD for realizing a fractional filter of order 1+a 
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Comparing the coefficients of the corresponding terms in (7) 
and (9) it is readily obtained that 
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 The expressions given by (10) and (11) will be used, at 
circuit level realization, for the calculation of the values of 
the elements of the filter. 
 In order to facilitate the reader, the design procedure for 
a lowpass/highpass filter of the order 1+a will be 
summarized in an algorithmic way. Thus, the steps that 
should be followed are: 
 
• Step#1: Determination of the value of a. 
• Step#2: Calculation of the values of factors Ki (i=2, 3), 

according to (4). 
• Step#3: Calculation of the values of coefficients ai (i=0, 

1, 2), according to (6).  
• Step#4: Calculation of the values of coefficients bi (i=0, 

1, 2), according to (8). 
• Step#5: Calculation of the values of time-constants τi 

(i=1, 2, 3), according to (10). 
• Step#6: Denormalization of the values calculated in 

step#5 at the desired frequency.  
• Step#7: Calculation of the values of scale factors Gi (i=1, 

2, 3) according to (11). 
 
 

2.2. Lowpass fractional filters of order n+a (0<a <1) 
The realization of a fractional lowpass filter of the order n+a 
with Butterworth characteristics is performed using the 
polynomial ratio given by (12)  
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where )(1 sH LP

a+  is the transfer function given by (7) and 

( )sBn 1−  is the corresponding Butterworth polynomial of 
order n-1 [13]. 
 Using the expression in (7), then from (12) it is obtained 
the general form given by (13) 
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where the coefficients  ck (k=0,1,..,n+1) are defined by the 
values of bi (i=0,1,2) and the coefficients of the polynomial 

( )sBn 1− . 
 A general FBD for the implementation of (13) is 
demonstrated in Fig. 2. 
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Fig. 2. FBD for realizing a fractional filter of order n+a 
 
The realized transfer function is 
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 Comparing the coefficients of (13) and (14) it is derived 
that, under the assumption that cn+2=1, the time-constants are 
calculated by the formula in (15) as  
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while the corresponding gain factors are  given by the 
expressions in (16) 
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In order to formulate the procedure for designing a 

high-order fractional lowpass filter, the required steps are the 
following: 

 
•  Step#1: Determination of the value of a. 
• Step#2: Calculation of the values of factors Ki (i=2, 3), 

according to (4). 
• Step#3: Calculation of the values of coefficients ai (i=0, 

1, 2), according to (6). 

• Step#4: Calculation of the values of coefficients bi (i=0, 
1, 2), according to (8). 

• Step#5: Derivation of the transfer function according to 
(12). 

• Step#6: Calculation of the coefficients ck (k=0,1,..,n+1). 
• Step#7: Calculation of the values of time-constants τi 

(i=1, 2, 3), according to (15). 
• Step#8: Denormalization of the values calculated in 

step#7 at the desired frequency.  
• Step#9: Calculation of the values of scale factors Gi (i=1, 

2, 3), according to (16). 
 
 It should be mentioned at this point that an alternative 
way for designing a n+a order filter could be the cascade 
connection of a 1+a order filter with a n-1 order filter. This 
achieved facilitation of the design procedure is achieved at 
the expense of the sensitivity of the whole filter.  
 
 
3. Fractional-order filters using CFOAs 
The realization of the FBD in Fig. 1, using CFOAs as active 
elements, is depicted in Fig. 3. 
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Fig. 3. Fractional filter of order 1+a using CFOAs as active elements 
 
 In a similar way, the FBD in Fig. 2 could be realized 
using CFOAs. In both realizations the time-constants as well 
as the gain factors are given by the formulas: τi=RCi and 
Gi=Rf/Ri (i=1,2,3), respectively. Therefore, using the 
aforementioned formulas and the expressions in (10)-(11) 
and (15)-(16) a fractional filter of arbitrary order could be 
designed. 
 Inspecting the topology in Fig.3 it is readily obtained 
that only grounded capacitors and resistors are required. This 
is very attractive feature from the integration point of view, 
because the effect of parasitics in high frequency 
applications is minimized. In addition, resistors can be 
emulated by appropriately configured active elements 
offering electronic tuning capability of the cutoff frequency 
of the filter as well as of the order of the filter. In this way, 
the filter topology could be adopted to the now days trend 
for designing analog filter with electronically programmable 
characteristics and without using conventional passive 
resistors. Another important feature of the filter in Fig.3 is 
originated from the fact that output is derived at the terminal 
O of the corresponding CFOA. Taking into account that this 
is the output of the internal buffer of the CFOA it is 
concluded that the structure in Fig.3 is suitable for direct 
cascade connection; in other words, the employment of 
additional buffers is avoided leading to reduction of the 
active component count in comparison with the 
corresponding structures where CCIIs are employed. 
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4. Experimental results 
 
The behavior of the filter in Fig.3 is evaluated through 
experimental results, using the commercially available 
AD844 discrete IC components as CFOAs, biased at ±10V. 
Using the design step presented in Section 2, and 
considering that R=10KΩ, the calculated values of the 
passive components for realizing fractional lowpass filters 
with Butterworth characteristics and cutoff frequency 10kHz 
are summarized in Table 1.  
 The experimental setup is demonstrated in Fig. 4. It 
should be mentioned at this point that DIP switches have 
been utilized in order to achieve programmability of the 
order of the filter 
 
Table 1. Element values of the filter in Fig.3. 
Element Order 1.1 Order 1.5 Order 1.8 

R (kΩ) 10 10 10 
R1 (kΩ) 58.8 142.8 529.8 
R2 (kΩ) 13.1 16.3 21.3 
R3 (kΩ) 10 10 10 
Rf (kΩ) 10 10 10 
C1 (nF) 0.37 0.56 0.63 
C2 (nF) 1.53 1.38 1.41 
C3 (nF) 7.22 5.24 4.5 

 

 
Fig. 4. Experimental setup for evaluating the filter in Fig.3 
 
The measured frequency response of a 1.5 order filter is 
demonstrated in Fig.5, where the cutoff frequency was 
9.3kHz while the slope of the stopband attenuation was 
equal to -9.5dB/oct. Taking into account that the 
corresponding theoretically predicted values were 10kHz 

and -9dB/oct, respectively, the correct operation of the filter 
in Fig.3 is verified. The observed deviations are mainly 
caused by the effect of parasitics of AD844 as well as by the 
tolerances of the used passive resistors and capacitors. These 
can be easily compensated through appropriate trimming.   
 

 
Fig. 5. Frequency response of the filter in Fig.3 in the case of  1.5 order. 
 
 
5. Conclusion 
Fractional-order filters could be designed in a systematic 
way following the procedure presented in this paper. The 
employment of CFOAs as active elements offers the benefit 
of realizations with only grounded passive elements and 
capability for cascade connection without the requirement of 
extra buffering stages. The provided experimental results, 
where AD844 discrete IC components have been used as 
CFOAs, confirm the correct operation of the proposed 
fractional-order filter structure in terms of cutoff frequency 
as well as of the attenuation gradient. Thus, the proposed 
realization could be considered as an attractive candidate for 
realizing fractional-order filters using discrete IC 
components. 

This paper was presented at Pan-Hellenic Conference on 
Electronics and Telecommunications - PACET, that took 
place May 8-9 2015, at Ioannina Greece.  
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