
Problems of Information Society, 2022, vol.13, no.2, 46–54

46

Automatic generation of test cases for error detection using the

extended Imperialist Competitive Algorithm

Shahrokh Jalilian1, Shafagat J. Mahmudova2

1Space Research Institute, Fourteenth Saadat Abad str., 74, Tehran, Iran

2Azerbaijan National Academy of Sciences, Institute of Information Technology, 9A, B. Vahabzade str., AZ1141 Baku, Azerbaijan

1shjalilian@gmail.com, 2shafagat7@gmail.com

orcid.org/0000-0002-3161-54251, orcid.org/0000-0003-1817-07562

A R T I C L E I N F O

http://doi.org/10.25045/jpis.v13.i2.06

A B S T R A C T

Article history:

Received 10 January 2022

Received in revised form

14 mart 2021

Accepted 16 May 2022

 As computing technology progresses, computer systems and their activity domain are becoming

widespread, and software projects are becoming complicated in the current society. Software

testing is time-consuming and expensive. It aims at validating software functional and non-

functional requirements, including software performance. During the test stages, first, it is

specified whether software elements perform their tasks accurately and create correct output.

While in software testing at the program code level, we can text all circles and lines of program

and conditional parts of the program while there needs data in these tests which can test all these

cases and cold pass the program lines with the most coating that is one of the most challenging

problems in this type of software tests. Therefore, Imperialist Competitive Algorithm, an

advanced algorithm, is considered for producing optimal test data for finding errors in programs.

Practical results and evaluating the proposed method with other methods indicate the presented

algorithm's excellence.

Keywords:

Automatic Generation

Imperialist Competitive Algorithm

Error Detection

Software Test

Reliability

1. Introduction

The main goal of software testing is to estimate

and evaluate the quality of the product in each

stage of software development. Software

evaluation is performed for different reasons, of

which we can mention estimating quality,

reliability, ease in keeping and supporting, safety,

etc. Testing software can be performed on different

levels, such as unit testing, integrity, system, and

acceptance. One of the primary stages of testing a

system is unit testing [1], in which each of the units

or composing modules tests a program

independently. A unit test usually is done by

programmers during system development. That

means a programmer who writes a module for a

system is responsible for testing that module, and

there is no need for postponing the testing of that

module until after system completion. Unit testing

aims to determine the accuracy of the function of

units that will be used after development in

different parts of the system. Unit testing is usually

considered part of white-box tests, which requires

access to the inner structure of the testing code.

The integrity test aims at the reliability that

different parts of the system are working well with

each other and interactions, connections, data

replacing are made accurately among different

modules of a system, and therefore, the whole

system has a correct function. Integrity tests can be

performed at different levels. For example, we can

consider each of the basic modules of the system as

a system (it is composed of smaller components)

and perform an integrity test. Moreover, we can

consider the whole system as a unit system and test

it. The notable point is that it should not be

assumed that performing a unit test on system

modules do not require performing the integrity

test. Both types of mentioned tests are required,

and each has its unique ability. The notable point in

the integrity test is the contact points and

interaction of modules with each other which test

13 (2)

2022

www.jpis.az

mailto:shjalilian@
mailto:2shafagat7@gmail.com
https://orcid.org/0000-0002-3161-5425
https://orcid.org/0000-0003-1817-0756
http://doi.org/10.25045/jpis.v13.i2.06

Problems of Information Society, 2022, vol.13, no.2, 46–54

47

the modules along with each other and their

function, while the unit test considers modules

independently and separately from other

components of the system [2].

A system test is a fully integrated system to

study whether all requirements are met. Before

supplying the final copy of the software, alpha and

beta tests are also performed. The acceptance test is

performed based on documented requirements of

system users, and it aims at acquiring the

confidence of supplying all requirements of users

by system. In other words, in this test, we want to

be sure that the produced system is acceptable in

users’ view, so it is better to perform the test by

users or their representatives in actual conditions

and situations. One of the most challenging

expectations in software testing is designing a good

test case which is a complicated art. The test case is

one of the essential subjects in software

engineering, which have diverse definitions.

A test case summarizes the status of cases to be

tested. For example, if testing is performed in a

numerical field, one idea for this test will be

entering letter characters in the field. It is an idea of

whether a data group creates an error case. So, we

use test case which includes particular inputs or

unique methods for software testing. In this regard,

in this research, we will use Imperialist

Competitive Algorithm for producing test cases

that have the most program covering. This

algorithm is inspired by the social behavior of

humans and has more intelligence than other

algorithms inspired by other living creatures, and

can be used as an efficient algorithm.

2. Related Works

The complexity of software systems in the last

decade has been increased remarkably, and software

testing as a compressed work has become ever-

increasingly expensive; therefore, the technique

which leads to automatic production test data will

have the biggest potential for remarkable reduction

of costs. Many experiences and researches are

reviewed for studying test cases and solving

problems during research.

The studies were done by Suri et al. [3, 4]

compare the compound method of genetic

algorithm and bee colony with ant colony algorithm

for selecting test case in regression test and showed

that combining genetic and bee colony algorithm is

quicker than ACO (ant colony algorithm) and has a

significant effect in reducing costs and execution

time. In another research [4], Bhasin Et al. review the

literature to find the gap in their proposed method.

In their method, the cost of executing test cases is

considered a basic regression test and is prioritizing

criteria and using a genetic algorithm to reach the

desired result that minimizes the test set. In 2010,

Singh et al. propose an optimal method of time

limitation, which uses an ant colony optimizing

algorithm. The results provide motivation

considered in the next research [5], and its algorithm

is implemented with a few changes in which ACO

can create optimal test cases successfully.

Wung et al. [6] introduce an automatic approach

for producing test cases based on specifying the

usages with domain modeling, which were used for

providing automatic ground for detecting scenarios

and test inputs of the combination of processing

natural languages with another method. In [7],

Sapienz presents an intuitive approach for testing

android programs with a multipurpose structure

based on searching. This approach explores problem

space and simultaneously finds optimal sequence

following the increasing problem searching area and

error report. In development, Sapienz uses the

combination of random fuzzy and systematic and

exploratory search. Most software programs that are

developing include a graphic interface. Systematic

testing of these programs requires modeling test

cases as a set of interface events produced and

executed on software. Researchers and scholars

believe that different techniques such as model-

based, observation/replay, and manual scripted

should be studied in graphic interface testing.

Nowadays, graphic interface testing is performed

with advanced tools.

Nguyen et al. [8] introduce a new tool named

Guitar, which exploits different testing techniques in

the graphic interface. One of the important features

of this tool is using additives from which the users

can benefit according to their requirements. The

other group of software programs that users

nowadays consider is cell phone software. Cell

phone systems always support models based on

concurrent programming or events. These models

can create many concurrent errors due to creating

diverse threads which are not concurrent with each

other apart from features such as high responding

speed. Predicting and findings this group of errors is

very complicated and time-consuming. Meanwhile,

in [9], researchers develop a strategy for testing

graphic interface functions based on an optimizing

algorithm of simple particles poll. The proposed

strategy is presented to produce an optimal test case

using an event graph. Meanwhile, this strategy can

manage and restore test cases. One of the important

Problems of Information Society, 2022, vol.13, no.2, 46–54

48

features of the paper is presenting a strategy that

tests the graphic interface functions without

studying the program code.

In [10], a new technique named RacerDroid is

introduced to find concurrent errors in android

programs. This technique produces good test cases

by actively controlling events, scheduling, and

arranging threads. Security in computer systems has

become one of the important concerns of developers.

One of the conventional methods of security test is

the function block diagram (FBD). FBD is a PLC

programming language developed using a

graphical data stream. Authors of [11] proposed a

test coating approach and structural test based on

FBD. This approach considers all important data

stream paths and functions proper test (blocs).

Panichella et al. [12] model the production of test

cases as a multipurpose problem. The main reason

for this modeling is the availability of several goals

in testing each software, and the balance among test

goals was also studied. Finally, a solution named

DynaMOSA is proposed, a dynamic multipurpose

arranging algorithm. This approach is for producing

developed test cases. DynaMOSA is based on

hierarchy dependency control, and in other

research, Kalaee et al. [13] propose an approach for

software testing to balance precision and processing

time. These two goal functions are contrary to each

other such that increasing precision increases the

processing time. The paper’s main goal is to increase

precision and reduce processing time. The proposed

approach is based on a binary decision-making

graph diagram and particle pool algorithm [14]. In

the particle pool algorithm, each particle is a possible

response for optimizing producing test case. Then

particles search in the problem area to find a

response that optimizes the precision and

processing time. Modeling with a graph reduces

complexity, optimal managing of bulk data, and

simplifies the problem.

In [15], the automatic producing technique of test

case is studied in general, and this technique is

divided into five groups: 1) structure test via symbolic

processing, 2) model-based test, 3) compound test, 4)

random and adjustment random test and 5) search-

based test and each of these techniques was studied.

One important research in error finding in Pravin [16]

is an experimental study on error location and

effective choosing of test cases via neural network.

The neural network has several advantages

compared to other models, like its ability to learn. The

neural network can learn data rules with or without

supervision by fiving a simple dataset. Pattern

detection, system detection, intelligence control, cost,

credit estimation, and the ability to reuse are neural

networks applications that can help us find software

bogs. Pravin studies Tarantula error detections, set

community, set sharing, nearest neighbor, and

transactions reason and showed that the Tarantula

method outweigh the other four methods in error

detection and is less costly than the other four

methods. Pravin concludes that the RBF neural

network outweigh other methods studied in [16]

regarding time and error detection.

Pravin et al. [17] introduce an error detection

algorithm for prioritizing test cases or choosing test

cases with higher error detection. Pravin

implements his proposed method in an open-source

system like Webkit. The implementation results

show that increasing test cases is an effective method

and improves the time budget and the number of

detected errors compared to other methods. In [18],

software testing is introduced as the main process in

the software development life cycle. In this regard, a

method based on prioritizing test cases is presented.

This prioritizing depends on code coverage. In [19],

the GUI function test strategy is proposed via simple

SSO optimization. SSO is used to produce an

optimal test set via EIG (event-interaction graph),

and finally, in [20], a method is presented to

minimize the number of test cases in a conscious

structural test. In this method, the primary test is

optimized via CS (Coco search) and a combined

approach and used mutation test to remove different

breaks in testing software and filter test cases based

on detected breakpoints.

Efficient units are ranked by utilizing the factor of

competition among imperialists to attract each other’s

colonies. One advantage of proposed method is that,

without solving any mathematical and complex

solution approaches, all extreme and non-extreme

units are ranked only by comparing the pairs [21].

3. Proposed Approach

This section deals with the proposed method for

increasing error tolerance. One of the essential parts

of error-tolerant systems is the internal variables of

the program. By using these variables and following

the values of these variables, we can follow the

availability or unavailability of error based on these

values, while the notable point in this regard is using

input data in the program, which could cover more

lines of program to guide variables’ values in paths

with the most coverage. These paths can detect

sudden variables changes via these paths and

determine the error location. In this regard, this

research is composed of different parts.

Problems of Information Society, 2022, vol.13, no.2, 46–54

49

According to raised methods, one of the weak

points of these methods is focusing on output results,

we could not see the potential problems during

program execution, and we should only decide based

on output. In the raised proposed method, we can use

good test data for studying the procedure and obtain

values of variables after breakpoints of the errors

during the program. The procedure studying makes

it possible to study errors during program execution.

Several program samples, like benchmark, will be

used in this regard. These benchmarks are c#

programs. Benchmarks should be able to challenge

the program variables to test more intermediate data

in encountering types of circles and conditional

orders with benchmarks.

The features of the proposed method:

• Independency of the proposed method on

only the output system;

• Observing variables values in breakpoints

during program execution.

Shortcomings of the proposed method:

• Detecting breakpoints in the program;

• Equipping program for testing data test.

In this regard, section 3-1 will consider the

manner of program equipping, determining

breakpoints for determining passed paths by

variables, and section 3-2 will describe the

algorithm by embedding an execution process

control via test data with Imperialist Competitive

Algorithm since this algorithm could not cover the

errors accurately without valid data.

3.1. System of program equipping and determining

breakpoints

Before describing this part, we will introduce

some of the terms.

• Basic Block.

A Basic Block (BB) is a maximal set of

instructions that are ordered and non-branch

(except in the last instruction) or branch

destinations (except in the first instruction) where

the first instruction is execution and the last one is

leaving [22].

• Abstract Basic Block.

A basic abstract Block does not contain any

other adequate instructions except an

unconditional jump instruction and has only one

successor node and one predecessor node [24].

• Program Flow Graph.

Flow graph is based on the connection among

program lines which are surveyed by input data in

which each line of a program represents a token like

t={t_1,t_2,t_3,…,t_n} in which n shows program

lines. The connection among these lines is shown via

edges E={e_1,e_2,e_3,…,e_n} each line of a program

is executed after the other line is connected with an

edge, and if it is not executed, two lines of no edge

are considered among these lines.

• Branch sequence.

A program takes different paths depending on

the input applied. A path, a sequence of basic

blocks, is chosen depending on the outcome of the

control instructions encountered at run-time [25].

We called the sequence of basic blocks, which will

be executed at run-time, a branch sequence.

3.1.1. Breakpoints

Some programs are used as a benchmark for

detecting breakpoints. First, the text of these

programs is read via breakpoints detecting

programs and tokens. Token means putting lines of

a program in separate parts to decide based on these

parts about breakpoints. Based on the created token,

conditional order is extracted. When conditional

order or circle is seen in a token, the system

considers this token as the onset of a conditional

pointy and will search for the final token. These

operations will be done based on the number of

open and closed braces in token after the start point.

A sample of implementing this method is displayed

in continuing. The sample of the below code is

considered input for finding the breakpoint (fig.1).

Fig.1. Input Code

In this program, tokens are the lines in a

program. Each of these lines is put in a list, and a

graph is created after detecting breakpoints. In this

graph, breakpoints are seen well. Fig.2 illustrates

the graph based on input data in the program.

Fig.2 shows the numbers within nodes,

program lines, or tokens.

Problems of Information Society, 2022, vol.13, no.2, 46–54

50

Fig.2. Program graph based on conditional orders

3.1.2 Equipping program for testing data

Program equipping means accessing variables'

values, defined and initialized before breakpoints.

The variables in every program are divided into two

main groups:

• Input data: these data are used as program

input, and their values are transferred to

intermediate data for operations in the program.

Intermediate data: these data are defined within

the primary function during the program as used

variables and are used during the program, and

these data are called local variables.

Displaying the values of these variables after

breakpoints is very important since we can observe

and display the changes in variables within bloc

(parts of the program which are put in the

beginning and end of a breakpoint).

Displaying the values of these variables after

breakpoints is very important since we can observe

and display the changes in variables within bloc

(parts of the program which are put in the beginning

and end of a breakpoint). The raised system in this

research automatically extracts the raised variables in

the program, saves the values of these variables after

breakpoints in a text file, and then displays them in

the program. Program equipping comprises several

parts, as seen in the flow chart below (fig. 3).

This flowchart uses the graph of program lines

as a workflow graph. This graph can show the

different program execution paths from the

beginning to the end. These paths will help us a lot

in finding breakpoints and simulating variables.

3.1.3 Imperialist Competitive Algorithm for producing

test data

Imperialist Competitive Algorithm is a method

in evolutionary computations which deals with

finding the optimal response to different

optimizing problems.

Fig.3. Flowchart of program equipping

This algorithm provides an algorithm for

solving optimizing mathematical problems via

mathematically modeling the social-political

evolutionary process. The essential bases of this

algorithm are composed of assimilation, imperialist

competition, and revolution. This algorithm

imitates countries’ social, economic, and political

evolutionary processes, and upon mathematically

modeling parts of this procedure, it provides

operators regularly as a country. Imperialist

Competitive Algorithm stages will be studied in

continuing. In optimization, the goal is finding an

optimal response based on problem variables; we

create an array of problem variables that should be

optimized. For starting algorithm, we create

N_country of the primary country to choose N_imp

of the best members of this society (the countries

with a minor cost function) as imperialist. The

remaining N_col of countries composes colonies,

each of which belongs to an imperial. To divide

primary colonies among imperialists, we give

several imperialist colonies proportional to their

power. In this research, the countries show input

variables for each benchmark. The below table 1

displays a country for a benchmark with six input

variables. Each variable ranges randomly between

-1000 and 1000.

Reading program codes and

tokening the lines

Creating graphs for program

lines & detecting breakpoints

Detecting available variables

in the program

Adding lines to the program

after breakpoints to save the

variable values as a text file

Displaying values of variables

in a saved text file after

execution

Problems of Information Society, 2022, vol.13, no.2, 46–54

51

Table 1. A country for a benchmark with six input variables

Value 6 Value 5 Value 4 Value 3 Value 2 Value 1

25 20 -50 100 25 -10

In this table, the number of variables is

considered at 6.

In this algorithm, the fitness function is the

number of passed lines by input data, and if the

number of these lines is high, these values are

accepted as test data. In this regard, stages of the

Imperialist Competitive Algorithm are described

as follows:

1. Choose the countries based on input data

and create primary imperials;

2. Move the colonies toward imperialist

countries (assimilation or absorption policy);

3. Produce a new country and replace it if the

fitness function is better;

4. Apply revolution operator;

5. If there is a colony in an imperial which has

less cost than the imperialist, replace the colony

and imperialist;

6. Calculate the total cost of this imperial

(considering imperialist and its colonies cost);

7. Choose one or more colonies of the weakest

imperial and give it to the imperial which has the

most probability of takeover;

8. Remove weak imperials;

9. If only one imperial remains, stop;

otherwise, go to stage 2.

We can create test data to cover errors in

programs based on a raised fitness function

according to these variables.

4. Experimental Results

In order to assess the effectiveness of the

proposed approach, five benchmark programs are

chosen for the experiment: Quick Sort (QS), Matrix

Multiplication (MM), Bubble Sort (BS), Linked List

(LL), and Binary Search Tree (BST) while

performance overhead, memory size overhead,

error detection latency, and error detection

coverage are obligatory parameters for evaluating

our approach that should be measured and

reported. The procedure is such that having

evaluated the memory overhead and the

performance loss results of the presented scheme,

the average error detection latency of the presented

scheme is analyzed, which follows with allotting to

the error detection coverage. We adopted this

method in which the faults are injected into the

program by modifying the assembly codes of the

source file. The assembly codes randomly applied

one branch deletion, branch creation, or branch

operand change. We consider four versions for

each benchmark:

• The original code;

• A safe one obtained by applying the CFCSS

[25] technique to the original code;

• A safe one obtained by applying the

RSCFC [26] technique to the original code;

• A safe one obtained by applying the CFCBS

technique to the original code;

• A safe one, obtained by applying our

technique to the original code.

Table 1 shows the results during fault injection

experiments. Fault effects are classified as follows:

• Wrong Result (WR): the fault modifies the

program’s results without being detected;

• Two thousand errors, including branch

deletion faults, branch creation faults, or branch

operand change faults, are injected for each

assembly program; having compiled the faulty

assembly program, a machine code is generated.

In order to assess the effectiveness of the

proposed approach, five benchmark programs are

chosen for the experiment: Quick Sort (QS), Matrix

Multiplication (MM), Bubble Sort (BS), Linked List

(LL), and Binary Search Tree (BST) while

performance overhead, memory size overhead,

error detection latency, and error detection

coverage are obligatory parameters for evaluating

our approach that should be measured and

reported. The procedure is such that having

evaluated the memory overhead and the

performance loss results of the presented scheme,

the average error detection latency of the presented

scheme is analyzed, which follows with allotting to

the error detection coverage. We adopted this

method in which the faults are injected into the

program by modifying the assembly codes of the

source file. The assembly codes randomly applied

one branch deletion, branch creation, or branch

operand change. We consider four versions for

each benchmark:

• The original code;

• A safe one obtained by applying the CFCSS

[25] technique to the original code;

• A safe one obtained by applying the RSCFC

[26] technique to the original code;

• A safe one obtained by applying the CFCBS

technique to the original code;

• A safe one, obtained by applying our

Problems of Information Society, 2022, vol.13, no.2, 46–54

52

technique to the original code.

Table 1 shows the results during fault injection

experiments. Fault effects are classified as follows:

• Wrong Result (WR): the fault modifies the

program’s results without being detected;

• Two thousand errors, including branch

deletion faults, branch creation faults, or branch

operand change faults, are injected for each

assembly program; having compiled the faulty

assembly program, a machine code is generated.

Table 1.A. Experiment results of branch deletion and branch change faults injection into programs

Insert (wr)(%) Change (wr)(%) DEL (wr)(%) Program

 28.7 25.4 36.7 QS-original

 25.3 25.3 40.3 QS-original

 16.7 26.7 48.7 BS-original

19.4 29.4 54.4 LL-original

 26.5 30.9 40.9 BST-original

 7.46 10.5 17.4 QS-CFCSS

14.5 5.30 12.7 MM-CFCSS

 8.64 16.9 6.73 BS-CFCSS

 7.20 18.2 10.42 LL-CFCSS

 11.6 13.4 20.3 BST-CFCSS

 6.20 7.82 15.1 QS-RSCFC

 13.3 4.83 7.60 MM-RSCFC

 4.24 13.2 5.34 BS-RSCFC

 7.26 14.5 13.6 LL-RSCFC

8.64 11.6 15.4 BST-RSCFC

 4.75 8.34 15.5 QS-CFCBS

 12.9 5.35 8.92 MM-CFCBS

 4.64 14.5 4.20 BS-CFCBS

 9.68 16.1 11.80 LL-CFCBS

 6.78 10.8 14.9 BST-CFCBS

 4.36 6.87 14.9 QS-our technique

 11.25 4.31 7.26 MM- our technique

 4.52 13.21 3.69 BS- our technique

 7.21 14.42 9.86 LL- our technique

 6.31 10.6 14.2 BST- our technique

Original programs and the hardened programs

with CFCSS, RSCFC, CFCBS, and our technique

under each fault type. As can be seen in Fig. 4, 5, 6.

Thus, our technique can be compared with the best

previous techniques in terms of fault coverage.

Fig. 4. The comparison of undetected faults branch

deletion faults injection into programs

Problems of Information Society, 2022, vol.13, no.2, 46–54

53

Fig.5. The comparison of undetected faults branch change

 faults injection into programs

Fig.6. The comparison of undetected faults branch creation

 faults injection into programs

5. Conclusion

This paper presented a method for controlling

and detecting error. The method was based on

detecting breakpoints and paths by producing test

data via Imperialist Competitive Algorithm for

detecting error. In this regard, the program was

initially equipped, and breakpoints were detected

in the program. Having used error injection

experiments on SPEC criteria, it was shown that the

proposed method performed higher efficiency

compared to previous techniques.

References

1. Parkin, R., & Australia, I. (1997) Software unit testing. The

Independent Software Testing Specialists, IV & V Australia.
2. Häser, F., Felderer, M., Breu, R. (2014) Software paradigms,

assessment types and non-functional requirements in model-
based integration testing: a systematic literature review. In

Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering (p. 29). ACM.

3. Suri, B., Mangal, I. (2012) Analyzing test case selection using

a proposed hybrid technique based on BCO and genetic
algorithm and comparison with ACO. International Journal

of Advanced Research in Computer Science and Software
Engineering, 2(4).

4. Bhasin, H. (2013) A Novel Approach to Cost Cognizant

Regression Testing. International Journal of Computer
Science and Management Research, 2(5), 2595-2600.

5. Suri, B., & Singhal, S. (2011) Analyzing test case selection &
prioritization using ACO. ACM SIGSOFT Software

Engineering Notes, 36(6), 1-5.
6. Wang, C., Pastore, F., Goknil, A., Briand, L., Iqbal, Z. (2015)

Automatic generation of system test cases from use case
specifications. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis (pp. 385-396).

ACM.
7. Mao, K., Harman, M., Y. (2016) Sapienz: Multi-objective

automated testing for Android applications. In Proceedings
of the 25th International Symposium on Software Testing

and Analysis (pp. 94-105). ACM.
8. Nguyen, B. N., Robbins, B., Banerjee, I., Memon, A. (2014)

GUITAR: an innovative tool for automated testing of GUI-
driven software. Automated software engineering, 21(1), 65-
105.

9. Ahmed, B. S., Sahib, M. A., Potrus, M. Y. (2014) Generating
combinatorial test cases using Simplified Swarm

Optimization (SSO) algorithm for automated GUI

Problems of Information Society, 2022, vol.13, no.2, 46–54

54

functional testing. Engineering Science and Technology, an

International Journal, 17(4), 218-226.
10. Tang, H., Wu, G., Wei, J., Zhong, H. (2016) Generating test

cases to expose concurrency bugs in Android applications.
In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (pp. 648-

653). ACM.
11. Wu, Y. C., & Fan, C. F. (2014) Automatic test case generation

for structural testing of function block diagrams.
Information and Software Technology, 56(10), 1360-1376.

12. Panichella, A., Kifetew, F. M., Tonella, P. (2018) Automated
test case generation as a many-objective optimization

problem with a dynamic selection of the targets. IEEE
Transactions on Software Engineering, 44(2), 122-158.

13. Kalaee, A., Rafe, V. (2016) An optimal solution for test case
generation using ROBDD graph and PSO algorithm.
Quality and Reliability Engineering International, 32(7),

2263-2279.
14. Jordehi, A. R. (2015) Enhanced leader PSO (ELPSO): a new

PSO variant for solving global optimization problems.
Applied Soft Computing, 26, 401-417.

15. Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B.,
Grieskamp, W, Li, J. J. (2013) An orchestrated survey of

methodologies for automated software test case generation.
Journal of Systems and Software, 86(8), 1978-2001.

16. Pravin, A., Srinivasan, D. S. (2013) An efficient algorithm for

reducing the test cases is used for performing regression
testing. In 2nd International Conference on Computational

Techniques and Artificial Intelligence, Dubai (UAE) (pp.
194-197).

17. Pravin, A., Srinivasan, S. (2013) Effective Test Case Selection
and Prioritization in Regression Testing. Journal of

Computer Science 9 (5): 654-659, 2013 ISSN 1549-3636.
18. Ahmed, B. S., Sahib, M. A. & Potrus, M. Y. (2014) Generating

combinatorial test cases using Simplified Swarm

Optimization (SSO) algorithm for automated GUI

functional testing. Engineering Science and Technology, an

International Journal, 17(4), 218-226.
19. Ahmed, B. S. (2016) Test case minimization approach using

fault detection and combinatorial optimization techniques
for configuration-aware structural testing. Engineering
Science and Technology, an International Journal, 19(2), 737-

753.
20. Alkhalifa, Z., Nair, V. S., Krishnamurthy, N., Abraham, J. A.

(1999) Design and evaluation of system-level checks for on-
line control flow error detection. IEEE Transactions on

Parallel and Distributed Systems, 10(6), 627-641.
21. Hasan, B. K., Mohsen, R. M., Farhad, H., L. (2021) Ranking

of decision making units using the imperialist competitive
algorithm in DEA. Measurement and Control, 54(9), 1326-

1335. https://doi.org/10.1177/00202940211028883
22. Jian-Li, L. I., Qing-Ping, T. A. N., Tan, L. F., Jian-Jun, X. U.

(2014) Control flow checking Method based on Abstract

Basic Block and Formatted Signature. Chinese Journal of
Computers, 37(11).

23. Venkatasubramanian, R., Hayes, J. P., & Murray, B. T. (2003)
Low-cost on-line fault detection using control flow

assertions. In 9th IEEE On-Line Testing Symposium, 2003.
IOLTS 2003. (pp. 137-143). IEEE.

24. Oh, N., Shirvani, P. P., & McCluskey, E. J. (2002) Control-
flow checking by software signatures. IEEE transactions on
Reliability, 51(1), 111-122.

25. Li, A., Hong, B. (2010) On-line control flow error detection
using relationship signatures among basic blocks.

Computers & electrical engineering, 36(1), 132-141.
26. Liu, L., Ci, L., Liu, W. (2016) Control-Flow Checking Using

Branch Sequence Signatures. In 2016 IEEE International
Conference on Internet of Things (iThings) and IEEE Green

Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData) (pp. 839-845). IEEE.

