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ABSTRACT
Fuzzy algebra is an algebraic structure in which classical addition and multiplication are replaced by ⊕ and ⊗, where a⊕ b =

max{a,b}, a⊗b = min{a,b}. A vector x is an eigenvector of a matrix A if A⊗ x = x.
An interval vector X and the possible and universal eigenvectors are defined. A necessary and sufficient condition for the possible

and universal eigenvectors of a circulant matrix are proved and several examples are given.
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1. INTRODUCTION

Matrices in fuzzy algebra are useful for expressing ap-
plications of fuzzy discrete dynamic systems, graph theory,
scheduling, medical diagnosis [13], [14] or fuzzy logic pro-
grams [7].

Eigenvector of a fuzzy matrix characterize stable states
of the corresponding discrete event systems. Investiga-
tion of the fuzzy eigenvectors of a given matrix is there-
fore of great importance. The eigenproblem in fuzzy al-
gebra has been studied by many authors. Interesting results
were found in describing the structure of the eigenspace and
the algorithms for computing the maximal eigenvector of a
given matrix were suggested, see, e.g., [1], [10], [11], [15].
The structure of the eigenspace as a union of intervals of
increasing eigenvectors is described in [3].

The eigenproblem of fuzzy matrices and its connection
to paths in digraphs were investigated in [1], [6].

The structure of the eigenspace for a special case of so-
called circulant matrices is described in [5].

In practice, vector inputs are rather contained in some
intervals than exact values. The aim of this paper is to de-
scribe the interval eigenvectors of circulant matrices. We
define the possible and universal eigenvectors of circulant
matrices and give necessary and sufficient conditions for
them.

2. PRELIMINARIES

The fuzzy algebra B is the triple (B,⊕,⊗), where
(B,≤) is a bounded linearly ordered set with binary opera-
tions maximum and minimum, denoted by⊕ and⊗, respec-
tively. The least element in B will be denoted by O, the
greatest one by I.

By N we denote the set of all natural numbers and by
N0 the set N0 = N∪ {0}. The greatest common divisor
of a set S ⊆ N is denoted by gcdS. For a given natural
number n ∈ N, we use the notations N = {1,2, . . . ,n} and
N0 = {0,1, . . . ,n−1}.

For any n ∈ N, B(n,n) denotes the set of all square ma-
trices of order n and B(n) the set of all n-dimensional col-
umn vectors over B. The matrix operations over B are de-
fined formally in the same manner (with respect to⊕,⊗) as
matrix operations over any field.

For a given matrix A ∈ B(n,n), the number λ ∈ B and

the n-tuple x ∈ B(n) are the so-called eigenvalue and eigen-
vector of A, respectively, if

A⊗ x = λ ⊗ x. (1)

For λ = I equation (1) gets the form

A⊗ x = x. (2)

The eigenspace V (A) is defined as the set of all eigen-
vectors of A, i.e.,

V (A) = {x ∈ B(n); A⊗ x = x}.

3. EIGENVECTORS OF CIRCULANT MATRICES

A square matrix is circulant if the input values in every
row are the same as the values in the previous row, but they
are cyclically shifted by one position to the right. Formally,
matrix A ∈ B(n,n) is circulant if

ai j = akl

whenever
i− k ≡ j− l modn.

Hence, a circulant matrix A is completely determined by
inputs a0, a1, . . . ,an−1 in the first row, i.e.,

A(a0,a1, . . . ,an−1) =


a0 a1 a2 . . . an−2 an−1

an−1 a0 a1 . . . an−3 an−2
...

...
...

...
...

a1 a2 a3 . . . an−1 a0

 .

For a given circulant matrix A(a0,a1, . . . ,an−1) we define a
strictly decreasing sequence M(A) = (m1,m2, . . .ms(A)) re-
cursively as follows:

mr =

{
max{ai; i ∈ N0} for r = 1,
max{ai; ai < mr−1; i ∈ N0} for r > 1.

It is easy to see that m1 > m2 > · · · > ms(A) and the length
s(A) of the sequence M(A) equals to the number of dif-
ferent values in the first row. We shall use the notation
S(A) = {1,2, . . . ,s(A)}. For each r ∈ S(A) denote by Pr
the set of all positions of the value mr in first row, i.e.,

Pr = {i ∈ N0; ai = mr}
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and define the numbers

dr = gcd(Pr∪{n}), er = gcd(d1,d2, . . . ,dr)= gcd(er−1,dr).

(3)

The following two lemmas give necessary conditions for a
vector x to be an eigenvector of A.

Lemma 3.1. [5] Let circulant matrix A =
A(a0,a1, . . . ,an−1) be given and x be an eigenvector of
A. Then xk ≤ m1 for every k ∈ N.

Lemma 3.2. [5] Let circulant matrix A =
A(a0,a1, . . . ,an−1) be given and x be an eigenvector of
A, let k, l ∈ N and r ∈ S(A). If xk < mr then the following
implications hold true

(i) if k ≡ l moddr then xk = xl ,

(ii) if k ≡ l moder then xk = xl .

In fact, in the previous lemma the part (ii) implies the part
(i). The lemma says that in each eigenvector any entry
xk < mr must be repeated after er positions. The follow-
ing theorem gives a necessary and sufficient condition for a
vector x to be an eigenvector of A.

Theorem 3.1. [5] Let A = A(a0,a1, . . . ,an−1) be a circu-
lant matrix. A vector x ∈ B(n) is an eigenvector of A if and
only if there is a partition T on N such that for every class
T ∈ T there exist x(T ) ∈ B and r(T ) ∈ S(A) satisfying the
following conditions

(i) xk = x(T )≤ m1 for every k ∈ T ,

(ii) r(T ) = max{r ∈ S(A); x(T )< mr},

(iii) T is an equivalence class in N modulo er(T ).

For a given r ∈ S(A) denote Er = {1,2, . . . ,er}. For each
r ∈ S(A), i ∈ Er define

Nr
i = {k ∈ N; k ≡ imoder}, (4)

i.e., Nr
i is the equivalence class modulo er containing i∈Er.

Remark 3.1. Since er+1|er for each r ∈ {1,2, . . . ,s(A)−1},
it follows from the properties of the equivalence relation
that for each i, j ∈ N and r1,r2 ∈ S(A), r1 ≤ r2 either
Nr1

i ⊆ Nr2
j or Nr1

i ∩Nr2
j = /0.

The following theorem gives other necessary and sufficient
condition for a vector x to be an eigenvector of A, which
will be used in the next section.

Theorem 3.2. Let A = A(a0,a1, . . . ,an−1) be a circulant
matrix. A vector x ∈ B(n) is an eigenvector of A if and
only if max

k∈N
xk ≤ m1 and for each r ∈ S(A), i ∈ Er such

that min
k∈Nr

i

xk < mr the equality xt = xs is satisfied for each

t,s ∈ Nr
i .

Proof. Suppose that

max
k∈N

xk ≤ m1 (5)

and

(∀r ∈ S(A))(∀i ∈ Er)[min
k∈Nr

i

xk < mr⇒ (∀t,s ∈ Nr
i )xt = xs].

(6)

We construct a partition T on N satisfying the conditions
from Theorem 3.1 by the following algorithm.

Algorithm A : Determining a partition T

Input: A(a0,a1, . . . ,an−1), vector x ∈ B(n)
Output: the sets T j, the elements x(T j) ∈ B and the num-
bers r(T j) ∈ S(A)

begin
j := 1; Ñ := /0;
for r = s(A) : 1 do

if Ñ 6= N then
for i = 1 : er do

if min
k∈Nr

i

xk < mr and i /∈ Ñ then

T j := Nr
i ; r(T j) := r; x(T j) := min

k∈T j
xk;

Ñ := Ñ∪T j; j := j+1;

endif
enddo

endif
enddo

end
As the output of Algorithm A we get the sets

T 1,T 2, . . . ,T p, 1 ≤ p ≤ n. We will prove that the sets
T 1,T 2, . . . ,T p, 1 ≤ p ≤ n create the partition T on N.
The inequality T u 6= T v for u 6= v follows from Remark
3.1. Further, for each l ∈ N there exists j ∈ S(A) such that
min
k∈N j

i

xk <m j, where l ∈N j
i , i.e., l ∈ T s for some s≤ n, which

implies ∪
k=1,...,p

T k = N .

The validity of the conditions ii) and iii) of Theorem
3.1 follows from the definitions of T j and r(T j) for each
T j ∈T .

The equality x(T j) = xk for each k ∈ T j follows from
(6) and the inequality in i) is a consequence of (5) . Thus
the condition i) is satisfied for each T j ∈T .

By Theorem 3.1 the vector x is an eigenvector of A.
For the converse implication suppose that

max
k∈N

xk > m1 (7)

or

(∃r∈ S(A))(∃i∈Er)[min
k∈Nr

i

xk <mr∧(∃t,s∈Nr
i )xt 6= xs]. (8)

If inequality (7) is satisfied then x is not an eigenvector of
A by Lemma 3.1.

If condition (8) holds true then there exists r ∈ S(A), i ∈
Er and l,m ∈ Nr

i such that xl = min
k∈Nr

i

xk < mr and xm 6= xl .
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Since l ≡ mmoder, by Lemma 3.2ii) the vector x is not an
eigenvector of A. �

The eigenproblem for circulant matrices in max-plus al-
gebra was studied in [10].

4. INTERVAL EIGENVECTORS

Similarly to [2], [4], [8], [9] we define an interval vector
X.

Definition 4.1. Let x, x ∈ B(n), x ≤ x. An interval vector
X with bounds x,x is defined as follows

X = [x,x] = {x ∈ B(n); x≤ x≤ x} .

Definition 4.2. An interval vector X is

(i) a possible eigenvector of A if there exists x ∈ X that
is an eigenvector of A,

(ii) a universal eigenvector of A if each vector x∈X is an
eigenvector of A.

4.1. Possible eigenvectors

Theorem 4.1. Let A = A(a0,a1, . . . ,an−1) be a circulant
matrix. An interval vector X is a possible eigenvector of
A if and only if max

k∈N
xk ≤ m1 and for each r ∈ S(A), i ∈ Er

such that min
k∈Nr

i

xk < mr, the inequality max
k∈Nr

i

xk ≤min
Nr

i

xk holds

true.

Proof. In formally way, the theorem says that X is a possi-
ble eigenvector of A if and only if

max
k∈N

xk ≤ m1 (9)

and

(∀r ∈ S(A))(∀i ∈ Er)[min
k∈Nr

i

xk < mr⇒max
k∈Nr

i

xk ≤min
Nr

i

xk].

(10)Suppose that

max
k∈N

xk > m1 (11)

or

(∃r ∈ S(A))(∃i∈ Er)[min
k∈Nr

i

xk < mr∧max
k∈Nr

i

xk > min
k∈Nr

i

xk]. (12)

Inequality (11) implies the existence of l ∈ N such that
xl > m1. Then for each x ∈ X we get xl > m1. Accord-
ing to Lemma 3.1 there is no eigenvector of A in X. Thus X
is not a possible eigenvector of A.

If condition (12) is fulfilled then there exists r ∈
S(A), i ∈ Er such that min

k∈Nr
i

xk ≤ min
k∈Nr

i

xk < mr for each x ∈X.

Moreover, the inequality max
k∈Nr

i

xk > min
k∈Nr

i

xk implies the ex-

istence of t,s ∈ Nr
i such that xt ≥ xt = max

k∈Nr
i

xk > min
k∈Nr

i

xk =

xs ≥ xs, i.e. xt 6= xs for each x ∈ X. In view of Theorem
3.2 there is no eigenvector x ∈ X. Thus X is not a possible
eigenvector of A.

For the converse implication suppose that

max
k∈N

xk ≤ m1 (13)

and

(∀r ∈ S(A))(∀i ∈ Er)[min
k∈Nr

i

xk < mr⇒max
k∈Nr

i

xk ≤min
Nr

i

xk].

(14)

We shall construct the vector x∗ ∈ X such that x∗ is an
eigenvector of A by the following algorithm.

Algorithm A2: Finding the eigenvector x∗(A)

Input: A(a0,a1, . . . ,an−1), interval vector X ∈ B(n)
Output: the sets T j, the elements x∗(T j) ∈ B, the numbers
r∗(T j) ∈ S(A) and the vector x∗ ∈ B(n)

begin
j := 1; Ñ := /0;
for r = s(A) : 1 do

if Ñ 6= N then
for i = 1 : er do

if min
k∈Nr

i

xk < mr and i /∈ Ñ then

T j := Nr
i ; r∗(T j) := r;

x∗(T j) := min
k∈T j

xk; (*)

for l ∈ T j do
x∗l := x∗(T j); (**)

enddo
Ñ := Ñ∪T j; j := j+1;

endif
enddo

endif
enddo

end

As the output of Algorithm A2 we get the sets
T 1,T 2, . . . ,T p, p ≤ n. Similarly as in Algorithm A1, the
sets T 1,T 2, . . . ,T p, p ≤ n create the partition T on N.
Moreover, the conditions i)− iii) of Theorem 3.1 are satis-
fied. The inequality max

k∈Nr
i

xk ≤ min
Nr

i

xk implies that min
k∈Nr

i

xk ∈

[xl ,xl ] for each l ∈ Nr
i . Thus the constructed vector x∗ lies

in X.
In view of Theorem 3.1 the vector x∗ is an eigenvector

of A. Moreover, x∗ is the greatest eigenvector in X because
of (*) , (**) and Theorem 3.2. �

4.2. Universal eigenvectors

Theorem 4.2. Let A = A(a0,a1, . . . ,an−1) be a circulant
matrix. An interval vector X is a universal eigenvector of
A if and only if x is an eigenvector of A, max

k∈N
xk ≤ m1 and

for each r ∈ S(A), i ∈ N such that er 6= n and xi < mr, the
equality xi = xi is fulfilled.

Proof. Suppose that

x is not an eigenvector of A or max
k∈N

xk > m1
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or

(∃i ∈ N)(∃r ∈ S(A))[xi < mr ∧ er 6= n∧ xi 6= xi]. (15)

If x is not an eigenvector of A then X is not a universal
eigenvector of A.

In the second case the inequality max
k∈N

xk > m1 implies

that x is not an eigenvector of A and consequently X is not
a universal eigenvector of A.

In the third case suppose that condition (15) is satis-
fied and x is an eigenvector of A. Since er 6= n, there exists
j ∈N, j 6= i such that j≡ imoder. Since x is an eigenvector
of A, we have xi = x j. Define the vector x̃ ∈ B(n) as follows

x̃k =

{
xk for k = i,
xk for k 6= i.

Since x̃ j <mr, i≡ j moder and x̃i 6= x̃ j, the vector x̃ is not an
eigenvector of A by Lemma 3.2. Thus X is not a universal
eigenvector of A.

For the converse implication suppose that x is an eigen-
vector of A, max

k∈N
xk ≤m1 and X is not a universal eigenvec-

tor of A. We will prove that the condition (15) is satisfied.
If x∈X is not an eigenvector of A and max

k∈N
xk ≤m1 then,

by Theorem 3.2, there exist r ∈ S(A) and j ∈ Er such that
min
k∈Nr

j

xk < mr and xt 6= xs for some t,s∈Nr
j . Then er 6= n and

there exists i∈Nr
j such that xi = min

k∈Nr
j

xk <mr. The existence

of t,s∈Nr
j such that xt 6= xs implies xi 6= xt or xi 6= xs. With-

out lost of generality we shall suppose that xi 6= xt . Whereas
x is an eigenvector of A we get xi = xt . In the conjunction
with the inequality xi 6= xt we get xi 6= xi or xt 6= xt . Thus
the condition (15) is satisfied. �

Corollary 4.1.

i) If A = A(a0,a1, . . . ,an−1) is such that P1 = {0} and
[xi,xi]⊆ [m1,m2] for each i ∈ N then X is a universal
eigenvector of A.

ii) Let for each i ∈ N the inequality xi < mr∗ , where
r∗ = min{r; er 6= n}, holds true. An interval vector
X is a universal eigenvector of A if and only if x = x
and x is an eigenvector of A.

iii) If there exists j ∈ N such that x j < mr̃ where r̃ =
min{r; er = 1}. Then X is a universal eigenvector
of A if and only if xi = xi = x j for each i ∈ N.

5. EXAMPLES

Example 5.1. Check out, whether a given interval vector
X is a possible (universal) eigenvector of A, if

A = A(14,2,5,3,1,0,10,1,7,2,1,1)

and

X = ([4,6], [6,8], [3,10], [5,7], [2,14], [5,12], [4,8], [2,9],

[3,9], [4,9], [4,10], [9,14])T .

The strictly decreasing sequence of inputs is M(A) =
(m1,m2, . . . ,m8) = (14,10,7,5,3,2,1,0). The sets Pr, r ∈
{1,2, . . . ,8} are P1 = {0}, P2 = {6}, P3 = {8}, P4 = {2},
P5 = {3}, P6 = {1,9}, P7 = {4,7,10,11}, P8 = {5}. We
compute the numbers er, r ∈ {1,2, . . . ,8} using (3). We get
e1 = 12, e2 = 6, e3 = 2, e4 = 2, e5 = e6 = e7 = e8 = 1.

We have to check conditions (9) and (10). Denote by (I)
the implication

min
k∈Nr

i

xk < mr⇒max
k∈Nr

i

xk ≤min
Nr

i

xk (I)

from (10).
Since max

k∈N
xk = 9 ≤ m1 inequality (9) holds true. To

verify (10) we start with r = s(A) = 8. We compute e8 = 1,
E8 = {1} and N8

1 = N. Since min
k∈N

xk = 6≥ 0 the implication

(I) is true for r = 8.
In fact, it is sufficient to start with the least r such that

er = 1, i.e., r = 5. Since min
k∈N

xk = 6≥m5 the implication in

(10) is true for r ∈ {5,6,7,8}.
Similarly, since e3 = e4 = 2 we continue with r = 3.

We have E3 = {1,2} and N3
1 = {1,3,5,7,9,11}, N3

2 =
{2,4,6,8,10,12}.

For i = 1 we have min
k∈N3

1

xk = 6 < m3, so we compute

max
k∈N3

1

xk = 4 ≤ min
k∈N3

1

xk. Thus the implication (I) holds true.

Moreover, we can construct the vector x∗ using Algorithm
A2. We put x∗1 = x∗3 = x∗5 = x∗7 = x∗9 = x∗11 = 6. We have
Ñ = N3

1 .
For i = 2 we compute min

k∈N3
2

xk = 8 ≥ m3, hence the im-

plication is true.
For r = 2 we have N2

1 = {1,7}, N2
2 = {2,8}, N2

3 =
{3,9}, N2

4 = {4,10}, N2
5 = {5,11}, N2

6 = {6,12}. For
i∈ {1,3,5}we have i∈ Ñ, so we consider only i∈ {2,4,6}.
We compute min

k∈N2
2

xk = 8<m2 and max
k∈N2

2

xk = 6≤ min
k∈N2

2

xk. We

put x∗2 = x∗8 = 8.
For the set N2

4 we get min
k∈N2

4

xk = 7 < m2 and max
k∈N2

4

xk =

5≤ min
k∈N2

4

xk. We put x∗4 = x∗10 = 7.

Since min
k∈N2

6

xk = 12≥ m2, the implication (I) is true.

For r = 1 we have N1
i = {i} for each i ∈ N. In this

case the implication always holds true. It remains to put
x∗6 = 12, x∗12 = 14.

The interval vector X is not a universal eigenvector of
A, because the vector x is not an eigenvector of A.

Answer:

• The interval vector X is a possible eigenvector of A
and the vector x∗ = (6,8,6,7,6,12,6,8,6,7,6,14)T

is the greatest eigenvector of A lying in X.

• The interval vector X is not a universal eigenvector
of A.

Example 5.2. In this example we show three universal
eigenvectors of the matrix A(14,2,5,3,1,0,10,1,7,2,1,1)
from the previous example using Corollary 4.1.
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i) The given matrix satisfies the condition P1 = {0}.
We take the vector X such that [xi,xi] ⊆ [m1,m2] =
[10,14] for each i ∈ N. This condition is satisfied,
e.g., by interval vector

X=([12,14], [11,13], [10,14], [11,12], [13,13], [10,12],

[12,13], [11,12], [10,13], [11,11], [12,14], [11,12]).

In view of Corollary 4.1i) the vector X is a universal
eigenvector of A.

ii) To demonstrate the use of Corollary 4.1ii), let us set
x = (5,7,5,7,5,8,5,7,5,7,5,8)T . The vector x is an
eigenvector of A according to Theorem 3.2. Since
r∗ = 2 and xi < m2 = 10 for each i ∈ N, the only uni-
versal eigenvector X is the constant vector, i.e., x = x.

iii) We have r̃ = 5, mr̃ = 3. Let x1 = 2. According to
Corollary 4.1iii), the only universal eigenvector of A
is such that xi = xi = 2 for each i ∈ N.
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Helena Myšková was born on 14. 1. 1964. She graduated
(RNDr) with distinction at the Faculty of Science at P. J.
Šafárik University in Košice in 1987. She defended her
PhD in the field of discrete mathematics in 2009; her thesis
title was “Solving of systems and interval systems of linear
equations over the max-plus and max-min algebra”. She is
working as a tutor at the Department of Mathematics and
Theoretical Informatics since 1995. Her scientific research
is focusing on interval computations in extremal algebras.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:09 AM


