Skip to content
Open Access Published by De Gruyter Open Access April 4, 2011

External calibration of GOCE accelerations to improve derived gravitational gradients

  • S. Rispens and J. Bouman

External calibration of GOCE accelerations to improve derived gravitational gradients

The aim of ESA's satellite mission GOCE is to determine the Earth's gravity field with high accuracy and resolution. To achieve this aim, GOCE carries a gravitational gradiometer that needs calibration. Existing global gravity field models in combination with GOCE star sensor data may be used to synthesize reference differential accelerations with which the common and differential accelerations, as derived from the gradiometer measurements, can be calibrated. We present a new method in which the data are transformed from the time to the frequency domain, which allows accounting for the coloured noise on the measurements. The weight matrix is iteratively adjusted and we apply our method to real GOCE data. With our method, the gravitational gradient trace significantly reduces as compared with the currently available in-flight calibrated measurements.



References

Arabelos D., Tscherning C.C. and Veicherts M. (2007): External calibration of GOCE SGG data with terrestrial gravity data: A simulation study. IAG Proceedings 130, pp. 337-344, Springer Verlag.10.1007/978-3-540-49350-1_50Search in Google Scholar

Bouman J., Koop R., Tscherning C. and Visser P. (2004): Calibration of GOCE SGG data using high-low SST, terrestrial gravity data and global gravity field models. Journal of Geodesy, 78, pp 124-137.10.1007/s00190-004-0382-5Search in Google Scholar

Bouman J., Catastini G., Cesare S., Jarecki F., Müller J., Kern M., Lamarre D., Plank G., Rispens S., Rummel R., Veicherts M., Visser P. and Tscherning C.C. (2008): Synthesis Analysis of Internal and External Calibration. GO-TN-HPF-GS-0221, Issue 1.0.Search in Google Scholar

Bouman J., Rispens R., Gruber T., Koop R., Schrama E., Visser P., Tscherning C. and Veicherts M. (2009): Pre-processing of gravity gradients at the GOCE High-level Processing Facility. Journal of Geodesy, 83, pp 659-678, DOI: 10.1007/s00190-008-0279-910.1007/s00190-008-0279-9Search in Google Scholar

Bouman J., Lamarre D., Rispens S. and Stummer C. (2010): Assessment and improvement of GOCE Level 1b data. Submitted to J. Geod., GOCE Special Issue.Search in Google Scholar

Cesare S. (2008): Performance requirements and budgets for the gradiometric mission. Issue 4 GO-TN-AI-0027, Alenia Spazio, Turin.Search in Google Scholar

Cesare S. and Catastini G. (2008): Gradiometer on-orbit calibration procedure analysis. Issue 4 GO-TN-AI-0069, Alenia Spazio, Turin.Search in Google Scholar

ESA (1999): Gravity field and steady-state ocean circulation mission. Reports for mission selection, The four candidate Earth explorer core missions. SP-1233(1), European Space Agency, Noordwijk.Search in Google Scholar

Foerste C., Flechtner F., Schmidt R., Stubenvoll R., Rothacher M., Kusche J., Neumayer H., Biancale R., Lemoine J.M., Barthelmes F., Bruinsma S., Koenig R. and Meyer U. (2008): EIGEN-GL05C - A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophysical Research Abstracts, Vol. 10, EGU2008-A-03426, 2008 SRef-ID:1607-7962/gra/EGU2008-A-03426Search in Google Scholar

Haagmans R., Prijatna K. and Omang O.D. (2002): An alternative concept for validation of GOCE gradiometry results based on regional gravity, Proceedings of 3rd Meeting of International Gravity and Geoid Commission, Thessaloniki, Greece.Search in Google Scholar

Jarecki F. and Müller J. (2007): GOCE Gradiometer Validation in Satellite Track Cross-Overs. Reviewed Proceedings of the 1st Int. Symp of IGFS, Harita Dergisi, Vol. 18, pp. 223-228.Search in Google Scholar

Jarecki F. and Müller J. (2008): Robust trend Estimation from GOCE SGG Satellite Track Cross-Over Differences. In: Observing Our Changing Earth. Reviewed Proceedings of the IAG General Assembly, Perugia, Italien, 2. -13. Juli 2007, ed. by M. Sideris, Springer, Berlin/Heidelberg/New York, IAG Symposia Series No. 133, pp. 363-369.10.1007/978-3-540-85426-5_43Search in Google Scholar

Kern M. and Haagmans R. (2005): Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric GOCE data. In Gravity, Geoid and Space Missions (GGSM2004), volume 129 of IAG Symposia, pp. 95-100, Springer.10.1007/3-540-26932-0_17Search in Google Scholar

Lamarre D. (2006): The very basic principles of the GOCE gradiometer in-flight calibration http://earth.esa.int/goce06/participants/87/pres_lamarre_87.pdfSearch in Google Scholar

Mayrhofer R. and Pail R. (2010): External calibration of SGG observations on accelerometer level; in: Mertikas S.P. (ed.) Gravity, Geoid and Earth Observation, IAG Symposia, Vol. 135, pp 147-154, Springer, ISBN (Print) 978-3-642-10633-0, ISBN (Online) 978-3-642-10634-7, ISSN 0939-9585, DOI: 10.1007/978-3-642-10634-7_2010.1007/978-3-642-10634-7_20Search in Google Scholar

Oppenheim A.V. and Schafer R.W. (1999): Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.Search in Google Scholar

Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.D., Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansò F. and Tscherning C.C. (2010): First GOCE gravity field models derived by three different approaches. Submitted to J Geod, GOCE Special Issue.10.1007/s00190-011-0467-xSearch in Google Scholar

Rispens S.M. and Bouman J. (2009): Calibrating the GOCE accelerations with star sensor data and a global gravity field model. Journal of Geodesy, 83:737-749, DOI:10.1007/s00190-008-0290-110.1007/s00190-008-0290-1Search in Google Scholar

Schuh W.D. (2002): Improved modelling of SGG-data sets by advanced filter strategies. In: ESA project From Eötvös to mGal+, WP 2, Final Report, pages 113-181. ESA/ESTEC Contract No. 14287/00/NL/DC.Search in Google Scholar

Schuh W.D., Brockmann J.M., Kargoll B., Krasbutter I. and Pail R. (2010): Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. Proceedings of the ESA Living Planet Symposium, Bergen, Norway, ESA SP-686.Search in Google Scholar

SERCO/DATAMAT Consortium (2006): GOCE L1b Products User Handbook. GOCE-GSEG-EOPG-TN-06-0137.Search in Google Scholar

Strang G. (1986): Introduction to Applied Mathematics. Wellesley-Cambridge Press, Massachusetts.Search in Google Scholar

Visser P.N.A.M. (2007): GOCE gradiometer validation by GPS. Advances in Space Research, 39, pp 1630-1637.10.1016/j.asr.2006.09.014Search in Google Scholar

Visser P.N.A.M. (2009): GOCE gradiometer: estimation of biases and scale factors of all six individual accelerometers by precise orbit determination. Journal of Geodesy, 83:69-85, DOI: 10.1007/s00190-008-0235-810.1007/s00190-008-0235-8Search in Google Scholar

Visser P.N.A.M., van den IJssel J., van Helleputte T., Bock H., Jäggi A., Beutler G., Švehla D., Hugentobler U. and Heinze M. (2009): Orbit determination for the GOCE satellite. Advances in Space Research, Volume 43, Issue 5, 2 March 2009, Pages 760-768, DOI:10.1016/j.asr.2008.09.01610.1016/j.asr.2008.09.016Search in Google Scholar

Published Online: 2011-4-4
Published in Print: 2011-1-1

This content is open access.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/v10156-010-0014-3/html
Scroll to top button