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INTRODUCTION

The saturation of soil cation exchange capacity
(CEC) with exchangeable base cations, simplified to
as “base saturation” (BS), has been considered a
complex physicochemical parameter that approximates
the relationships between exchangeable “basic” and
“acidic” cations in relation to other soil properties
and external factors, such as weathering stage,
parent material origin, texture, organic matter content,
climate, vegetation, fertilization, contamination etc.
(Blosser and Jenny 1971, Ga³ka et al. 2014, Gruba
and Mulder 2015, Bojko and Kaba³a 2016, Musielok
and Drewnik 2016, Józefowska et al. 2017). As a
direct measure, base saturation may indicate the
behaviour and availability of crucial elements (Bloom
et al. 2005, Bieliñska and Mocek 2010). Therefore,
BS became a general indicator of soil trophic status,
presumed to be better than other single characteri-
stics, including the pH value (Bieganowski et al. 2013,
Kobierski et al. 2015, £abaz et al. 2016), and thus –
became widely used in soil characterisation and
classification as one of crucial diagnostic criteria
(Kacprzak and Derkowski 2007, Mendyk et al. 2015,
Œwitoniak 2015, Kowalska et al. 2017, Krupski et al.
2017, Charzyñski et al. 2018, Waroszewski et al.
2018).

However, CEC and BS cannot be measured in the
field, due to special equipment necessary for analysis.
Therefore, the reliable and final naming, classification
and cartography of many soils is in fact impossible
until the analytical data from the laboratory were
delivered, that may take weeks. Such a prolonged lack
of final decision is particularly inconvenient at soil
mapping, where the  contours of soil unit should be
approximated during the field investigation (Brevik
et al. 2016). The above mentioned problem is not
marginal. Such a crucial diagnostic horizons as
mollic and umbric, common qualifiers Eutric and
Dystric, and reference groups Phaeozems, Alisols,
Luvisols etc. include BS in their diagnostic criteria
(IUSS Working Group WRB 2015). It means, many
basic distinctions cannot be completed without
advanced laboratory analysis. The formal require-
ments for diagnostic horizons/qualifiers do not allow
a field approximation of BS of mineral soils based on
their field-measured pH, even if this approximation is
commonly applied by many soil scientists. One can
therefore conclude, that the classification of many soil
units in the field is a fiction at present, if laboratory
data are unavailable.

The other disadvantage of BS is variable metho-
dology of its measurement. There is no universal
extracting agent similarly effective in both the acid,
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neutral and alkaline soils; mineral and organic; rich
or poor in carbonates, gypsum, and easily soluble salts
(Ross et al. 2008). The methods developed over the
century of investigation were suited to local climate
and soil conditions, and to the particular needs (Sumner
and Miller 1996). As the agriculture-oriented attempts
prevailed in the studies on soil sorption and cation
exchange phenomena, the standard methods refer to
potential equilibrium state, at the target pH of 7.0 or
8.2, depending on local soil conditions (Schollenberger
and Simon 1945, Maksimow and Góralski 1959).
However, such attempt, theoretically and practically
justified for the local optimization of the fertilization,
is not acceptable in soil classification, where the
universal criteria must be applied for all soils to avoid
different classification of the same soil, depending
on the method used for the analysis (Sumner and
Miller 1996). Thus, most of the national soil classifi-
cations have accepted only one method of CEC and
BS analysis, but not the same (Nemeèek et al. 2001,
Reintam and Köster 2006, Secu et al. 2008, Shi et al.
2010). As a result, a common, but hidden problem is
a limited correlativity of national soil maps and data-
bases merged within international programmes
(Jones et al. 2005, Reintam and Köster 2006, Keesstra
et al. 2016).

The international soil classification WRB (IUSS
Working Group WRB 2015) requires two different
methods of BS calculation:

(1) as a ratio of base cations (BC) to CEC7, where
both BC and CEC7 are measured in the extract obtained
after soil percolation with NH4OAc at pH 7 in the
glass pipes; applied to distinguish between mollic and
umbric horizons, and to identify Chernozems, Kasta-
nozems, Phaeozems, and, indirectly, Umbrisols;
designated here BS7, and

(2) as a ratio of BC (measured in NH4OAc at pH
7) to so called effective cation exchange capacity
(ECECAL), i.e. the sum of BC and exchangeable alu-
minium (extracted with 1M KCl, unbuffered) – dia-
gnostic for Eutric/Dystric qualifiers, and for Acrisols,
Alisols, Lixisols, and, indirectly, also for Luvisols;
designated here BSAL.

This approach has been criticized as too compli-
cated – requiring two measures for the same soil
feature, even in one soil profile (e.g. in Gleysols, where
different BS is applied to recognise the mollic/um-
bric horizons, if present, and the Eutric/Dystric
qualifier).

The problem with BS in soil classification has also
arisen in Poland since the classification based on
diagnostic horizons has introduced 0.2M BaCl2 to
measure the “total exchangeable acidity” (PSC 2011).
Unfortunately, the comparability of this extraction

with the methods accepted in WRB classification has
not been proven. Moreover, BaCl2 solution has never
been widely used in Poland and the utility of archival
data to classify soils using the new criteria is
unknown. The most typically in Poland, BSTA was
calculated as the ratio of BC (extracted with 1 M
NH4Cl pH 7.8–8.2) to the sum of BC and total
(“hydrolytic”) acidity (TA) extracted with 0.5 M
Ca(OAc)2 or 1 M NaOAc (Maksimow and Góralski
1959, Lityñski et al. 1976, Weber et al. 2007, Jawor-
ska et al. 2008, Kalembasa et al. 2011, Szewczyk et
al. 2015). This concept of ECECTA and BSTA was de-
rived intentionally for arable soils (regularly limed
and fertilized), and is known to underestimate the base
saturation in acid forest soils (Kaba³a et al. 2013) by
overestimating the total acidity (due to the raising the
equilibrium to the level that does not and cannot
occur in most forest soils). To get a more realistic
view into the present BS in the acid soils, such as
most of the forest soils under temperate humid
climate, many authors suggested (Lityñski et al. 1976
Leitgeb et al. 2013) to calculate BSEA as the ratio of
BC in NH4OAc at pH 7 extract to ECECEA being
a sum of BC and exchangeable acidity (EA) in 1 M
KCl, or using exchangeable Al instead of EA. The
popularity of the latter method comes from an
assumption that BSEA below 50% automatically
indicates the domination of exchangeable aluminium,
that is known of its toxicity to plant roots (Pokojska
1986, Porêbska et al. 2008).

To avoid the above mentioned inconsistency
related to different methods of BS calculation, that
are deeply rooted in the local pedological traditions
and cannot be modified/unified within a short time
period, and to allow the reliable soil classification in
the field, it is postulated to replace the BS with pH
value as diagnostic criterion. The aim of this work is
to testify the correlation between soil pH and BS
calculated using two methods commonly used in
Poland, and to derive the threshold pH values –
respective to 50% level of base saturation.

MATERIALS AND METHODS

A database of 4500 mineral soil samples was
compiled, representative for a wide collection of
arable and forest soils (Luvisols, Cambisols, Plano-
sols, Stagnosols, Gleysols, Retisols, Alisols, Pha-
eozems, Chernozems, Arenosols, Podzols, Leptosols,
and Fluvisols) from SW Poland and, to a lesser extent,
other regions of Poland (Kaba³a et al. 2016a). The
collection included samples from all mineral genetic
horizons, thus the presented relationships may differ
from other reports, that based mainly on topsoil
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layers (Clark and Hill 1964, Blosser and Jenny 1971,
Jaremko and Kalembasa 2014). Large variability of
soil texture is involved, with predominance of sand,
loamy sand, sandy loam, loam, and silt loam classes.
Similarly, samples were featured by broad range of
organic carbon content and soil pH (Table). All
laboratory analyses were conducted in the fine earths
(<2 mm), after sample drying, crushing, and sieving.
Soil pH was measured potentiometrically, in the
distilled water (pHw) and in 1M KCl (pHKCl) suspen-
sions at soil:solution ratio 1:2.5 v/v. Soil organic
carbon (SOC) was determined by dry combustion with
spectrometric detection of released CO2 (CS-Matt
5500), after carbonate removal if present; or by wet
oxidimetric method with an external heating, the so
called Tyurin method. Exchangeable base cations
(BC) were extracted with 1M NH4OAc at pH 7
(soil:solution 1:40) and the concentration of Ca, Mg,
K, and Na cations was determined using ICP technique
(Kaba³a and Karczewska 2017). An exchangeable
acidity (EA) was extracted with unbuffered 1 M KCl
(soil:solution 1:10) and titrated potentiometrically up
to pH 7.8. Exchangeable aluminium was measured
in the same extract by potentiometrical titration,
indirectly, after aluminium precipitation using NaF.
Total (“hydrolytic”) acidity (TA) was extracted with
0.5M Ca(OAc)2 (soil:solution 1:10) and titrated
potentiometrically up to pH 7.8 (Kaba³a and Karczew-
ska 2017). Base saturation was calculated in three
ways:
(1) using the exchangeable aluminium to calculate

the aluminium-effective cation exchange capacity:
  BSAL [%] = BC *100 / ECECAL, where
  ECECAL = BC + exchangeable aluminium;

(2) using the exchangeable acidity (EA) to calculate
the effective cation exchange capacity:

  BSEA [%] = BC *100 / ECECEA,
  where ECECEA = BC + EA;

(3) using the total (“hydrolytic”) acidity (TA) to
calculate the “total” cation exchange capacity:

  BSTA [%] = BC *100 / CECTA ,
  where CECTA = BC + TA.
The database has been completed over the years

using the results of variably focused projects using
different analytical protocols for particular samples.
Thus, the number of samples used for particular
correlation may greatly differ. It is displayed in
Table, separately for each soil characteristics.

As the values of pH measured in distilled water
and 1M KCl are highly correlated in Polish soils
(Kaba³a et al. 2016a), the modelling of the relation-
ship between pH and BS was made in this study for
the pHw only, and pHw was selected due to two
technical circumstances: (a) field tests of soil pH are
conducted in water suspension as a standard, both
using the rapid potentiometric measurements and
indication dyes, including the Hellige test (Steinhardt
and Mengel 1981), and (b) distilled/deionised water
is elsewhere available, including most petrol stations,
that allows its easy gaining in case of exhaustion
during field work.

Basic statistical parameters, correlation coeffi-
cients, and regression equations were calculated using
the Statistica 12 package, whereas the fitting of
mathematical models – using the CurveExpert
Pro 2.5 (Hyams Development).

RESULTS

Mean total (“hydrolytic”) acidity was nearly two-
fold higher than mean exchangeable acidity (Table);
however, the difference between acidities decreased
with increasing acidity values (Figure 1). Despite
relatively high determination coefficient (r2=0.70),
huge variability of respective acidity values should
be noted. For example, at the total acidity of 20
cmol(+) kg–1, soils had the exchangeable acidity in a

TABLE. Summary statistical characteristic of the soils used for calculations and correlations

eulaV Hp w Hp lCK COS fomuS
esab

snoitac
B

lA xe elbaegnahcE
ytidica

latoT
ytidica

noitarutasesaB

AE AT SB LA SB AE SB AT

% gk)+(lomc 1– %

N 0854 0854 0124 0843 0063 0314 0703 0092 0843 0512

naeM 9.4 2.4 7.2 7.3 5.2 6.3 5.6 4.15 0.34 5.13

muminiM 9.2 1.2 30.0 50.0 0.0 0.0 0.0 6.1 6.1 1.1

mumixaM 3.8 7.7 8.71 0.58 1.22 4.82 0.07 001 001 001

DS 9.0 9.0 8.2 8.6 3.3 9.3 0.7 8.13 8.92 2.72

Explanation: Alex – exchangeable aluminium, N – number of cases under investigation, SOC – soil organic carbon, SD – standard deviation.
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broad range of 4–25 cmol(+) kg–1. This is probably a
result of high content of pH-dependent charge as
typical for some humus- and iron oxide-rich soils,
that may produce unexpectedly high potential acidi-
ty, if buffered salt was used to acidity extraction
(Bloom et al. 2005). Despite the opinions on insigni-
ficant contribution of exchangeable hydrogen to exchan-
geable acidity as compared to exchangeable alumi-
nium in mineral soils (Sumner et al. 1996, Leitgeb et
al. 2013), the exchangeable aluminium created only
ca. 70% of exchangeable acidity, on average (Table).
This difference confirms the importance of pH-
dependent charge of soil organic matter (Bloom et al.
2005). If the mean values of exchangeable aluminium
and acidity differ, also the difference may be expected
in the pH value respective to 50% base saturation
calculated using these two parameters.

Both EA and TA were highly positively correlated
with pHw; however, the relationships were non-linear,
with many outliers (Figure 2), in particular at pHw
values below 5. One of differences between EA and
TA was the pH level, at which acidity dropped to zero.
Only the single samples have EA>1 cmol(+) kg–1 at
pHw≤6 and EA practically dropped to zero at pHw>6.5.
Whereas in case of TA, many samples have TA>1
cmol(+) kg–1 even at pHw>7, and TA decreased to
zero level in apparently alkaline samples, i.e. at pHw>8
(Figure 2). The latter statements have direct link to
the relationships between pHw and BS calculated
using EA or TA, as part of ECECEA or CECTA,
respectively (Figure 3). Some TA was found even in
slightly alkaline soils containing carbonates, that was
the case of soils developed from calcareous materials
in the Pieniny Mts (Kowalska et al. 2017).

Relationship between pH and base saturation was
non-linear irrespectively of the way of BS calculation
(Figure 3). Even if some authors suggested a linear
or near-linear trends in particular sections of pH-BS
relationship (Clark and Hill 1964, Blosser and Jenny
1971), a direct fitting of the whole data set to non-
linear model seems more reliable solution. Among
numerous tested equations, the Richards Sigmoidal
Model (for pHw and BSAL relationship) and the
Morgan-Mercer-Flodin Sigmoidal Model (MMF), for
all tested relationships, got the best fit to original data,
confirmed by the highest values of determination
coefficient, i.e.:
– for the relationship between BS

AL
 (Richards

Model)
BS

AL
=100/(1+e19.8-3.5*x)0.2, r2=0.50,

– for the relationship between BS
EA

 and pH
W

 (MMF
Model)
BS

EA
=(20.5*2336067241+102*x13)/

(2336067241+x13), r2=0.71,
– for the relationship between BS

TA
 and pH

w
 (MMF

Model)
BS

TA
=(3.2*602147+104*x8)/(602147+x8),

r2=0.66.
where x is a pH

w
 value.

The pHw values related to 50% base saturation
were approximated based on above mentioned
equations to the values of pHw 4.7, 5.0, and 5.4 for
BSAL, BSEA, and BSTA, respectively (Figure 3).
However, large variability must be stressed (“cloud”
of results), even if the determination coefficients got
satisfactory levels. In particular, the broad “foot” was
evident in all graphs (Figure 3), including large number
of soils featured by very low BS in a pHw range of 4–5.

FIGURE 1. Relationships between
exchangeable (EA) and total (TA)
acidity in soils under investigation
(N=3070).
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FIGURE 3. Relationships between pHw and base saturation
calculated using the exchangeable aluminium (BSAL)

exchangeable acidity (BSEA) or total/hydrolytic acidity (BSTA)
in a full range of soil pH (N=2900, N=3480, and N=2150,

respectively)

FIGURE 2. Relationships between pHw and exchangeable (EA)
or total (TA) acidity in soils under investigation (N=4130 and
N=3070, respectively)

DISCUSSION

The CECTA, relatively simple and inexpensive in
analytical terms, calculated as a sum of BC and TA,
became popular in Poland after confirmation of its
general comparability with more laborious and
expensive CEC7, measured by soil leaching with
NH4OAc pH 7 in glass columns (Lityñski et al. 1976).
Therefore, by analogy, the BSTA is believed compa-
rable with BS7 (Gruba and Mulder 2015). If we
accept this assumption, the pHw value 5.4 at which
BSTA reached 50%, may be considered appropriate to
distinguish between mollic and umbric horizons, as
related to the requirements of WRB (IUSS Working
Group WRB 2015), Soil Taxonomy (Soil Survey Staff

2014), and also Polish Soil Classification (PSC 2011).
The threshold value must be disjunctive as a quanti-
tative requirement, thus the rounded value of pHw ≤5.5
is recommended for mollic, whereas pHw<5.5 for
umbric horizon. In the same way, the pHw ≤5.5 is
recommended where the BS7≥50% is required, i.e. in
Phaeozems, Chernozems and Kastanozems (IUSS
Working Group WRB 2015).

Similarly, the pHw value of 4.7, at which BSAL
reached 50% level, may be considered appropriate
for distinguishing between Eutric and Dystric quali-
fiers, i.e. pHw<4.7 for Dystric and pHw ≤4.7 for
Eutric qualifiers, prevailing in a 20–100 cm soil
layer, respectively to original requirements (IUSS
Working Group WRB 2015). Suggested threshold
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refers to mineral soils only. The organic materials (e.g.
peat, litter) are unsatisfactory represented in a data-
base under analysis. However, the pHw values related
to 50% BS, calculated for limited number of organic
samples, are in the range 5.3–5.5, that confirm the
rightness of pHw value 5.5 already used to distinguish
between Dystric and Eutric qualifiers in the organic
materials (IUSS Working Group WRB 2015).

Bridging the quantitative criteria of WRB system
(IUSS Working Group WRB 2015) and the Polish
Soil Classification (PSC 2011), and also the Classifi-
cation of Forest Soils of Poland (Klasyfikacja gleb
leœnych Polski 2000), the pHw <5.5 is suggested to
feature the umbric, while pHw ≤5.5 – the mollic
horizon, instead of 50% base saturation. Furthermore,
the pHw value ≤5.5 may be used as supplementary
criterion for black earths, in Poland correlated with
Phaeozems or Chernozems (Kaba³a et al. 2016b). The
above suggested pHw threshold was tested using the
recently published and easily available sources
containing complete soil data, including the Soil
Sequences Atlas II (Œwitoniak and Charzyñski 2018),
the papers of Œwitoniak (2015), £abaz and Kabala
(2016), and £abaz et al. (2018). The recognition of
horizon or RSG based on pHw differed from the
original classification based on base saturation in 2
of 47 soil cases/profiles only.

The implementation of criteria for dystric/eutric
characteristic in Polish soil classifications is more
complex. First, dystric/eutric qualifiers do not have
direct equivalents in PSC (2011). The eutrophic/dys-
trophic characteristic of soil is applied at type or sub-
type level specifically for brown soils and vertisols
only (Cambisols and Vertisols, respectively, accor-
ding to Kaba³a et al. 2016b). Moreover, not two, but
three subtypes of brown soils are traditionally distin-
guished in Poland, i.e. proper – leached – acid (Clas-
sification of Forest Soils 2000) or eutrophic – leached
– dystrophic (PSC 2011). Furthermore, in Polish clas-
sifications, the particular BS (e.g. <50% for dystro-
phic/acid brown soils) is required in the entire depth
control section (between 30 and 80 cm, or 20 and
100 cm), whereas in WRB, the qualifier Dystric
refers to BS <50% prevailing in a depth control
section (between 20 and 100 cm). And the last, BS
has never been calculated in Poland as BSAL (as WRB
requires for Dytric/Eutric qualifiers)  even in acid
forest soils, but using the “hydrolytic” or exchange-
able acidity (Ga³ka et al. 2013, 2014; Bojko and Ka-
bala 2016). Taking into account the above mentioned
circumstances, all three thresholds (pHw values 4.7,
5.0 and 5.5) were tested using the examples of brown
soils (Cambisols) published in the Atlas of Forest Soils
(Bro¿ek and Zwydak 2003). The distinction made at

pHw 5.5 (derived from a large database of various
soils, not only brown soils/Cambisols) led to significant
underestimation of proper/eutrophic brown soils, thus
identified as leached or acid/dystrophic brown soils,
even in the forest habitats characterised as “hyper-
trophic”. Conversely, the threshold at pHw 4.7,
applied to entire depth control section 20–100 cm,
led to a conversion of some acid brown soils into
leached brown soils subtype. However, if the classi-
fication applied the pHw <4.7/≥4.7 to the prevailing
part of the depth control section (following the rules
of WRB classification), the differences between “old”
and “new” soil names/classifications were minimal
(in 2 of 34 profiles). Also the allocation of soil profiles
into dystrophic and eutrophic (proper and leached)
groups of brown soils was nearly identical with the
allocation into Dystric and Eutric qualifiers of WRB.
A reconsidering of the brown soils presented in the
Atlas (Bro¿ek and Zwydak 2003) using the pHw <5.0/
≥5.0 as a threshold value (applied to the entire control
section 20–100 cm for the acid and proper brown
soils, respectively) led to single changes in Polish
names of soils and single incompatibilities with the
names derived from WRB. It was, therefore, concluded,
that both the pHw 5.0 and 4.7 may be alternatively
used as threshold value to differentiate the subtypes
of brown soilsbrown soils in the Polish Soil Classifi-
cation; however, different pH distribution require-
ments must be applied within the depth control section:
(1)  pH

w
 4.7 as a threshold:

– proper brown soils – pH ≤4.7 throughout the
entire control section (20–100 cm),

– leached brown soils – pH /4.7 in the prevailing
part of the control section,

– acid brown soils – pH <4.7 in the prevailing part
of the control section; or

(2)  pH
w
 5.0 as a threshold:

– proper brown soils – pH ≤5.0 throughout the
entire control section (20–100 cm),

– leached brown soils – pH <5 in any part (sublayer)
of the control section,

– acid brown soils – pH <5.0 throughout the entire
control section.

It seems that the suggested conversion of BS into
pH as the diagnostic criteria for key horizons and soil
units  may significantly decrease the costs of the soil
classification and cartography. In many countries,
including Poland, the simplification of criteria may
enlarge the acceptance for modern soil classification.

Also, this must be clearly stated, that above
mentioned recommendations refer to the formal soil
classification only, and do not exclude the further use
of base saturation for soil characteristic and diagnosis,
e.g. for evaluation of the trophic soil varieties,
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following the methodology of SIG – Soil Trophic
Index (Bro¿ek et al. 2015). The same refers to exchan-
geable acidity (including exchangeable aluminium)
and total (“hydrolytic”) acidity as popular and valu-
able soil characteristics, used for professional analy-
sis of soil cation exchange phenomena, calculation
of fertilization or liming needs, soil degradation, etc.
(Ga³ka et al. 2013). Cation exchange capacity still
must be analysed if low activity clays are present in
soil and very CEC is expected, to identify the Ferral-
sols, Lixisols, and Acrisols.

CONCLUSIONS

Taking into account the fact that (a) measurement
of the cation exchange capacity and base saturation
is practically unavailable in the field, that formally
makes impossible the reliable field classification of
many soil units, (b) base saturation is measured or
calculated using various methods those results signi-
ficantly differ, (c) base saturation and soil pH are
highly positively correlated, it is suggested to replace
the base saturation with pHw (measured in distilled/
deionized water suspension) in the classification cri-
teria for diagnostic horizons and soil units/subunits.

Based on statistical analysis of some 4500 soil
samples, the following pHw values are recommended
instead of 50% base saturation (both in the Polish
and WRB soil classifications): pHw <5.5 for umbric,
and pHw ≤5.5 for mollic horizon and for Phaeozems,
Chernozems, Kastanozems (directly), and Umbrisols
(indirectly). Furthermore, the pHw <4.7 may replace
50% base saturation for the Dystric qualifier in mi-
neral soils and as criterion for Alisols, while pHw ≤4.7
may feature the Eutric qualifier (and Luvisols, indi-
rectly). Both the pHw 4.7 and 5.0 may be applied to
distinguish between eutrophic – leached – dystrophic
(or proper – leached - acid) brown soils in Polish soil
classification, but using different requirements for pH
distribution throughout the depth control section.
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Wspó³zale¿noœci miêdzy pH gleby a wysyceniem kationami zasadowymi –
wnioski dla polskiej i miêdzynarodowej klasyfikacji gleb

Streszczenie: Uwzglêdniaj¹c nastêpuj¹ce fakty: (a) pomiar pojemnoœci wymiany kationów oraz wysycenia kompleksu sorpcyjne-
go kationami zasadowymi jest praktycznie niemo¿liwy w terenie, co formalnie czyni niemo¿liw¹ klasyfikacjê wielu typów gleb
w trakcie prac terenowych, (b) wysycenie kationami zasadowymi jest wyznaczane kilkoma metodami, których wyniki ró¿ni¹ siê
istotnie, a tak¿e (c) wysycenie kationami zasadowymi i pH gleby s¹ istotnie dodatnio skorelowane, sugeruje siê, aby wartoœæ pHw
(mierzona w zawiesinie wody destylowanej/dejonizowanej) zast¹pi³a wysycenie kationami zasadowymi jako kryterium klasyfikacyj-
ne w definicjach poziomów diagnostycznych i jednostek/podjednostek glebowych w Systematyce Gleb Polski oraz w klasyfikacji
WRB. Bazuj¹c na analizie statystycznej ponad 4500 próbek glebowych, rekomenduje siê zast¹pienie kryterium 50% wysycenia
kationami zasadowymi: wartoœci¹ pHw <5.5 dla poziomu umbric i pHw ≥5.5 dla poziomu mollic, oraz dla Chernozems, Kastano-
zems, Phaeozems (bezpoœrednio) i Umbrisols (poœrednio). Podobnie, pHw <4.7 proponuje siê dla kwalifikatora Dystric w glebach
mineralnych i odpowiednich grup referencyjnych WRB, oraz odpowiednio pHw ≥4.7 dla kwalifikatora Eutric. Rozró¿nianie podty-
pów gleb brunatnych w Systematyce Gleb Polski mo¿e bazowaæ na pHw 4.7 lub 5.0, ale z zastosowaniem innych kryteriów co do
zró¿nicowania pH w sekcji kontrolnej. Propozycja zast¹pienia wysycenia kationami zasadowymi przez wskaŸnik pH odnosi siê
wy³¹cznie do systematyki gleb i nie umniejsza znaczenia wskaŸnika wysycenia kationami zasadowymi w profesjonalnej charaktery-
styce gleb.

S³owa kluczowe: wysycenie kationami zasadowymi, pH, klasyfikacja gleb, WRB, Systematyka gleb Polski


