Skip to main content
Log in

Asymptotic properties of solutions of the fractional diffusion-wave equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

For the fractional diffusion-wave equation with the Caputo-Djrbashian fractional derivative of order α ∈ (1, 2) with respect to the time variable, we prove an analog of the principle of limiting amplitude (well-known for the wave equation and some other hyperbolic equations) and a pointwise stabilization property of solutions (similar to a well-known property of the heat equation and some other parabolic equations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.G. Bazhlekova, Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3 (2000), 213–230.

    MATH  MathSciNet  Google Scholar 

  2. N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation. Cambridge University Press, 1987.

    Book  MATH  Google Scholar 

  3. V.N. Denisov, On the behavior of solutions of parabolic equations for large time values. Russian Math. Surveys 60 (2005), 721–790.

    Article  MATH  MathSciNet  Google Scholar 

  4. V.N. Denisov and V.D. Repnikov, Stabilization of the solution of the Cauchy problem for parabolic equations. Differential Equations 20 (1984), 16–33.

    MATH  MathSciNet  Google Scholar 

  5. M.M. Djrbashian, Harmonic Analysis and Boundary Value Problems in Complex Domain. Birkhäuser, Basel, 1993.

    Book  MATH  Google Scholar 

  6. S.D. Eidelman and V.D. Repnikov, Necessary and sufficient conditions for the establishment of a solution of the Cauchy problem. Soviet Math. Dokl. 7 (1966), 388–391.

    Google Scholar 

  7. I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products. Academic Press, San Diego, 1996.

    Google Scholar 

  8. G.M. Gubreev, Regular Mittag-Leffler kernels and spectral decomposition of a class of nonselfadjoint operators. Izvestiya: Math. 69 (2005), 15–57.

    Article  MATH  MathSciNet  Google Scholar 

  9. A.K. Gushchin and V.P. Mikhailov, Uniform stabilization of solutions of the Cauchy problem for a second order hyperbolic equation. Proc. Steklov Inst. Math. 166 (1986), 79–95.

    MATH  Google Scholar 

  10. E. Kamke, Das Lebesgue-Stieltjes-Integral, Teubner, Leipzig, 1956.

    MATH  Google Scholar 

  11. A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.

    MATH  Google Scholar 

  12. A.N. Kochubei, Stabilization of solutions of dissipative hyperbolic equations. Differential Equations 22 (1986), 1216–1222.

    MathSciNet  Google Scholar 

  13. A.N. Kochubei, Stabilization of solutions of dissipative hyperbolic equations with almost periodic coefficients. Differential Equations 23 (1987), 1406–1411.

    MathSciNet  Google Scholar 

  14. A.N. Kochubei, Fractional-hyperbolic systems. Fract. Calc. Appl. Anal. 16, No 4 (2013), 860–873; DOI: 10.2478/s13540-013-0053-4; http://link.springer.com/article/10.2478/s13540-013-0053-4.

    Article  MathSciNet  Google Scholar 

  15. A.N. Kochubei, Cauchy problem for fractional diffusion-wave equations with variable coefficients. Applicable Anal. Publ. online 24 Jan 2014, DOI: 10.1080/00036811.2013.875162.

  16. Li Kexue and Peng Jigen, Fractional abstract Cauchy problem. Integral Equ. Oper. Theory 70 (2011), 333–361.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London, 2010.

    Book  MATH  Google Scholar 

  18. V.M. Martirosyan, Integral transforms with kernels of Mittag-Leffler type in the classes L p (0,+∞), 1 < p ≤ 2, Math. USSR Sb. 57 (1987), 97–109.

    Article  MATH  Google Scholar 

  19. A.Yu. Popov and A.M. Sedletskii, Distribution of roots of Mittag-Leffler functions. J. Math. Sci. (New York) 190, No 2 (2013), 3–171.

    Article  MATH  MathSciNet  Google Scholar 

  20. A.V. Pskhu, The fundamental solution of a diffusion-wave equation of fractional order. Izvestiya: Math. 73 (2009), 351–392.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Schwabik, Abstract Perron-Stieltjes integral. Math. Bohemica 121 (1996), 425–447.

    MATH  MathSciNet  Google Scholar 

  22. B. Stankovic, On the function of E. M. Wright. Publ. Inst. Math. Nouv. Sér. 10, No 24 (1970), 113–124.

    MathSciNet  Google Scholar 

  23. A.N. Tikhonov and A.A. Samarskii, Equations of Mathematical Physics. Pergamon Press, Oxford, 1963.

    MATH  Google Scholar 

  24. E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part II. Clarendon Press, Oxford, 1958.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly N. Kochubei.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochubei, A.N. Asymptotic properties of solutions of the fractional diffusion-wave equation. Fract Calc Appl Anal 17, 881–896 (2014). https://doi.org/10.2478/s13540-014-0203-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0203-3

MSC 2010

Key Words and Phrases

Navigation