Skip to main content
Log in

Fractional integration toolbox

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The problems formulated in the fractional calculus framework often require numerical fractional integration/differentiation of large data sets. Several existing fractional control toolboxes are capable of performing fractional calculus operations, however, none of them can efficiently perform numerical integration on multiple large data sequences. We developed a Fractional Integration Toolbox (FIT), which efficiently performs fractional numerical integration/differentiation of the Riemann-Liouville type on large data sequences. The toolbox allows parallelization and is designed to be deployed on both CPU and GPU platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Anastasio, The fractional-order dynamics of brainstem vestibulooculomotor neurons. Biol. Cybern. 72 (1994), 69–79.

    Article  Google Scholar 

  2. K. Assaleh, W.M. Ahmad, Modeling of speech signals using fractional calculus. In: 9th International Symposium on Signal Processing and Its Applications, ISSPA 2007, 12–15 Feb. (2007), 1–4.

    Chapter  Google Scholar 

  3. C. deBoor, Practical Guide to Splines. Springer, New York (2001).

    Google Scholar 

  4. S.D. Conte, C. deBoor, Elementary Numerical Analysis. McGraw-Hill, New York (2002).

    Google Scholar 

  5. K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194 (2005), 743–773.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin (2010).

    Book  MATH  Google Scholar 

  7. A. Dokoumetzidis, R. Magin, P. Macheras, Fractional kinetics in multicompartmental systems. J. Pharmacokinet. Pharmacodyn. 37, No 5 (2010), 507–524.

    Article  Google Scholar 

  8. J.F. Douglas, Some applications of fractional calculus to polymer science. Advances in Chemical Physics 102 (2007), 121–191.

    Article  Google Scholar 

  9. N.J. Ford, A.C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy. Numerical Algorithms 26 (2001), 333–346.

    Article  MathSciNet  MATH  Google Scholar 

  10. F.N. Fritsch, R.E. Carlson, Monotone piecewise cubic interpolation. SIAM J. Numer. Anal 17, No 2 (1980).

    Google Scholar 

  11. P. Melchior, B. Orsoni, O. Lavialle and A. Oustaloup, The CRONE toolbox for Matlab: Fractional Path Planning Design in Robotics; http://www.ims-bordeaux.fr/CRONE/toolbox.

  12. M. Monsrefi-Torbati, J.K. Hammond, Physical and geometrical interpretation of fractional operators. J. Franklin Inst. 335B, No 6 (1998), 1077–1086.

    Article  Google Scholar 

  13. R.R. Nigmatullin, Fractional integral and its physical interpretation. Teoret. Mat. Fiz. 90, No 3 (1992), 354–368.

    MathSciNet  Google Scholar 

  14. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover, Mineola, New York (2006).

    Google Scholar 

  15. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, No 4 (2002), 367–386.

    MathSciNet  MATH  Google Scholar 

  16. F. Santamaria, S. Wils, E. de Schutter, G.J. Augustine, Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52 (2006), 635–648.

    Article  Google Scholar 

  17. F. Santamaria, S. Wils, E. de Schutter, G.J. Augustine, The diffusional properties of dendrites depend on the density of dendritic spines. Eur. J. Neurosci. 34, No 4 (2011), 561–568.

    Article  Google Scholar 

  18. N. Sebaa, Z.E.A. Fellah, W. Lauriks, C. Depollier, Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Processing Archive 86, No 10 (2006), 2668–2677.

    Article  MATH  Google Scholar 

  19. E. Soczkiewicz, Application of fractional calculus in the theory of viscoelasticity. Molecular and Quantum Acoustics 23 (2002), 397–404.

    Google Scholar 

  20. I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today 55, No 11 (2002), 48–54.

    Article  Google Scholar 

  21. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis. Springer, New York (1980).

    Google Scholar 

  22. A. Tepljakov, E. Petlenkov, J. Belikov, FOMCON: Fractional-Order Modeling and Control, Toolbox for MATLAB. In: 18th International Conf. “Mixed Design of Integrated Circuits and Systems”, June 16–18 (2011), Gliwice, Poland.

    Google Scholar 

  23. D. Valerio, J.S. da Costa, Ninteger: a non-integer control toolbox for Matlab; http://web.ist.utl.pt/duarte.valerio/FDA04T.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidel Santamaria.

About this article

Cite this article

Marinov, T.M., Ramirez, N. & Santamaria, F. Fractional integration toolbox. fcaa 16, 670–681 (2013). https://doi.org/10.2478/s13540-013-0042-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0042-7

MSC 2010

Key Words and Phrases

Navigation