Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 29, 2013

Geoheritage values of one of the largest maar craters in the Arabian Peninsula: the Al Wahbah Crater and other volcanoes (Harrat Kishb, Saudi Arabia)

  • Mohammed Moufti EMAIL logo , Károly Németh , Nabil El-Masry and Atef Qaddah
From the journal Open Geosciences

Abstract

Al Wahbah Crater is one of the largest and deepest Quaternary maar craters in the Arabian Peninsula. It is NW-SE-elongated, ∼2.3 km wide, ∼250 m deep and surrounded by an irregular near-perpendicular crater wall cut deeply into the Proterozoic diorite basement. Very few scientific studies have been conducted on this unique site, especially in respect to understanding the associated volcanic eruption processes. Al Wahbah and adjacent large explosion craters are currently a research subject in an international project, Volcanic Risk in Saudi Arabia (VORiSA). The focus of VORiSA is to characterise the volcanic hazards and eruption mechanisms of the vast volcanic fields in Western Saudi Arabia, while also defining the unique volcanic features of this region for use in future geoconservation, geoeducation and geotourism projects. Al Wahbah is inferred to be a maar crater that formed due to an explosive interaction of magma and water. The crater is surrounded by a tephra ring that consists predominantly of base surge deposits accumulated over a pre-maar scoria cone and underlying multiple lava flow units. The tephra ring acted as an obstacle against younger lava flows that were diverted along the margin of the tephra ring creating unique lava flow surface textures that recorded inflation and deflation processes along the margin of the post-maar lava flow. Al Wahbah is a unique geological feature that is not only a dramatic landform but also a site that can promote our understanding of complex phreatomagmatic monogenetic volcanism. The complex geological features perfectly preserved at Al Wahbah makes this site as an excellent geotope and a potential centre of geoeducation programs that could lead to the establishment of a geopark in the broader area at the Kishb Volcanic Field.

[1] Armiero V., Petrosino P., Lirer L. and Alberico I., The GeoCaF Project: Proposal of a Geosites Network at Campi Flegrei (Southern Italy), Geoheritage, 2011, 3, 195–219 http://dx.doi.org/10.1007/s12371-011-0033-110.1007/s12371-011-0033-1Search in Google Scholar

[2] Bitschene P. and Schueller A., Geo-education and geopark implementation in the Vulkaneifel European Geopark, GSA Field Guide, 2011, 22, 29–34 10.1130/2011.0022(03)Search in Google Scholar

[3] Erfurt-Cooper P., Geotourism in Volcanic and Geothermal Environments: Playing with Fire? Geoheritage, 2011, 3, 187–193 http://dx.doi.org/10.1007/s12371-010-0025-610.1007/s12371-010-0025-6Search in Google Scholar

[4] Joyce E., Australia’s Geoheritage: History of Study, A New Inventory of Geosites and Applications to Geotourism and Geoparks, Geoheritage, 2010, 2, 39–56 http://dx.doi.org/10.1007/s12371-010-0011-z10.1007/s12371-010-0011-zSearch in Google Scholar

[5] Ghazi J., Ólafsdóttir R., Tongkul F. and Ghazi J., Geological Features for Geotourism in the Western Part of Sahand Volcano, NW Iran, Geoheritage, 2013, 5, 23–34 http://dx.doi.org/10.1007/s12371-012-0071-310.1007/s12371-012-0071-3Search in Google Scholar

[6] Eder W., “UNESCO GEOPARKS” — A new initiative for protection and sustainable development of the Earth’s heritage, Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 1999, 214, 353–358 10.1127/njgpa/214/1999/353Search in Google Scholar

[7] Joyce E., McKnight J. and Anonymous, Volcanic geomorphosites, geoparks and geotourism; the Australian experience. Programme with Abstracts — International Geomorphology Conference, 2009, 7, 0-Abstract no. 726 Search in Google Scholar

[8] Keever P. J. M. and Zouros N., Geoparks: Celebrating Earth heritage, sustaining local communities, Episodes, 2005, 28, 274–278 10.18814/epiiugs/2005/v28i4/006Search in Google Scholar

[9] Kharbouch F., Bouab B., Malaki A., Zahraoui M., El Wartiti M. and Anonymous, The volcanic geopark of Ifrane and Azrou; a natural museum. International Geological Congress, Abstracts = Congres Geologique International, Resumes, 2008, 33, 0-Abstract 1436742 Search in Google Scholar

[10] Henriques M. H., dos Reis R. P., Brilha J. and Mota T., Geoconservation as an Emerging Geoscience, Geoheritage, 2011, 1–12 10.1007/s12371-011-0039-8Search in Google Scholar

[11] Erikstad L., Geoheritage and geodiversity management — the questions for tomorrow, Proceedings of the Geologists Association, 2013, [in press], http://dx.doi.org/10.1016/j.pgeola.2013.07.003 10.1016/j.pgeola.2013.07.003Search in Google Scholar

[12] Camp V. E., Roobol M. J. and Hooper P. R., The Arabian continental alkali basalt province; Part III, Evolution of Harrat Kishb, Kingdom of Saudi Arabia; with Suppl. Data 92-11, Geological Society of America Bulletin, 1992, 104, 379–396 http://dx.doi.org/10.1130/0016-7606(1992)104<0379:TACABP>2.3.CO;210.1130/0016-7606(1992)104<0379:TACABP>2.3.CO;2Search in Google Scholar

[13] Grainger D. J., Al Wahbah volcanic explosion crater, Saudi Arabia, Geology Today, 1996, January–February, 27–30 10.1046/j.1365-2451.1996.00006.xSearch in Google Scholar

[14] Moufti R. M., Németh K., Murcia H., Lindsay J. and El-Masry N., Geosite of a steep lava spatter cone of the 1256 AD, Al Madinah eruption, Kingdom of Saudi Arabia, Central European Journal of Geosciences, 2013, [in press] 10.2478/s13533-012-0123-xSearch in Google Scholar

[15] Moufti M. R. and Hashad M. H., Volcanic hazards assessment of Saudi Arabian Harrats: geochemical and isotopic studies of selected areas of active Makkah-Madinah-Nafud (MMN) volcanic rocks. Final project Report (LGP-5-27) 679 submitted to King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia, 2005, 1–401 Search in Google Scholar

[16] Camp V. E. and Roobol M. J., The Arabian continental alkali basalt province; Part I, Evolution of Harrat Rahat, Kingdom of Saudi Arabia; with Suppl. Data 89-04, Geological Society of America Bulletin, 1989, 101, 71–95 http://dx.doi.org/10.1130/0016-7606(1989)101<0071:TACABP>2.3.CO;210.1130/0016-7606(1989)101<0071:TACABP>2.3.CO;2Search in Google Scholar

[17] Camp V. E., Hooper P. R., Roobol M. J. and White D. L., The Madinah eruption, Saudi Arabia: Magma mixing and simultaneous extrusion of three basaltic chemical types, Bulletin of Volcanology, 1987, 49, 489–508 http://dx.doi.org/10.1007/BF0124547510.1007/BF01245475Search in Google Scholar

[18] Moufti M. R. and Németh K., The intra-continental Harrat Al Madinah Volcanic Field, Western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia, Geoheritage, 2013, [in press] 10.1007/s12371-013-0081-9Search in Google Scholar

[19] Moufti M. R. H., Khalil K. I. and Saad N. A., Petrogenesis of ultramafic xenoliths from Harrat Kishb, Saudi Arabia; a mineralogical study, Bulletin of the Faculty of Science. F, Geology, 2002, 31, 51–68 Search in Google Scholar

[20] Blusztajn J., Hart S. R., Shimizu N. and McGuire A. V., Trace-Element and Isotopic Characteristics of Spinel Peridotite Xenoliths from Saudi-Arabia, Chemical Geology, 1995, 123, 53–65 http://dx.doi.org/10.1016/0009-2541(95)00044-M10.1016/0009-2541(95)00044-MSearch in Google Scholar

[21] McGuire A. V., Petrology of mantle xenoliths from Harrat al Kishb; the mantle beneath western Saudi Arabia, Journal of Petrology, 1988, 29, 73–92 http://dx.doi.org/10.1093/petrology/29.1.7310.1093/petrology/29.1.73Search in Google Scholar

[22] Vaughan A. W., Mantle xenoliths from Harrat al Kishb, western Saudi Arabia, Eos, Transactions, American Geophysical Union, 1985, 66, 1114–1114 10.1029/EO066i022p00466-03Search in Google Scholar

[23] Chagarlamudi P. and Moufti M. R., The utility of Landsat images in delineating volcanic cones in Harrat Kishb, Kingdom of Saudi Arabia, International Journal of Remote Sensing, 1991, 12, 1547–1557 http://dx.doi.org/10.1080/0143116910895518810.1080/01431169108955188Search in Google Scholar

[24] Kereszturi G. and Németh K., Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Updates in Volcanology — New Advances in Understanding Volcanic Systems, Németh K. (Eds) 2012, inTech Open, Rijeka, Croatia, 3–88, http://dx.doi.org/10.5772/51387 10.5772/51387Search in Google Scholar

[25] Kereszturi G., Jordan G., Németh K. and Doniz-Paez J. F., Syn-eruptive morphometric variability of monogenetic scoria cones, Bulletin of Volcanology, 2012, 74, 2171–2185 http://dx.doi.org/10.1007/s00445-012-0658-110.1007/s00445-012-0658-1Search in Google Scholar

[26] Németh K., Risso C., Nullo F. and Kereszturi G., The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina, Central European Journal of Geosciences, 2011, 3, 102–118 http://dx.doi.org/10.2478/s13533-011-0008-410.2478/s13533-011-0008-4Search in Google Scholar

[27] Duraiswami R. A., Bondre N. R. and Managave S., Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: Implications for style of emplacement. Journal of Volcanology and Geothermal Research, 2008, 177, pp. 822–836 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.04810.1016/j.jvolgeores.2008.01.048Search in Google Scholar

[28] Stevenson J. A., Mitchell N. C., Cassidy M. and Pinkerton H., Widespread inflation and drainage of a pahoehoe flow field: the Nesjahraun, Aingvellir, Iceland, Bulletin of Volcanology, 2012, 74, 15–31 http://dx.doi.org/10.1007/s00445-011-0482-z10.1007/s00445-011-0482-zSearch in Google Scholar

[29] Rossi M. J., Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland, Geomorphology, 1997, 20, 95–112 http://dx.doi.org/10.1016/S0169-555X(97)00007-X10.1016/S0169-555X(97)00007-XSearch in Google Scholar

[30] Anderson S. W., Smrekar S. E. and Stofan E. R., Tumulus development on lava flows: insights from observations of active tumuli and analysis of formation models, Bulletin of Volcanology, 2012, 74, 931–946 http://dx.doi.org/10.1007/s00445-012-0576-210.1007/s00445-012-0576-2Search in Google Scholar

[31] Németh K., Haller M. J., Martin U., Risso C. and Massaferro G., Morphology of lava tumuli from Mendoza (Argentina), Patagonia (Argentina), and Al-Haruj (Libya), Zeitschrift Fur Geomorphologie, 2008, 52, 181–194 http://dx.doi.org/10.1127/0372-8854/2008/0052-018110.1127/0372-8854/2008/0052-0181Search in Google Scholar

[32] Pint J. J. and Nicod J., Vulcanospeleology in Saudi Arabia, Acta Carsologica, 2006, 35, 107–119 http://dx.doi.org/10.3986/ac.v35i1.24710.3986/ac.v35i1.247Search in Google Scholar

[33] Pint J., Pint S. and Anonymous, The lava tubes of Harrat Kishb, Saudi Arabia, Journal of Cave and Karst Studies, 2005, 67, 194–194 Search in Google Scholar

[34] Roobol M. J., Pint J. J., Al-Shanti M. A., Al-Juaid A. J., Al-Amoudi S. A., Pint S., Al-Eisa A. M., Allam F., Al-Sulaimani G. S. and Banakhar A. S., Preliminary survey for lava-tube caves on Harrat Kishb, Kingdom of Saudi Arabia, Open-File Report — Saudi Geological Survey, 2002, 35–35 Search in Google Scholar

[35] Giusti C. and Calvet M., The inventory of French geomorphosites and the problem of nested scales and landscape complexity. Geomorphologie-Relief Processus Environnement, 2010, 223–244 10.4000/geomorphologie.7947Search in Google Scholar

[36] Vespermann D. and Schmincke H. -U., Scoria cones and tuff rings. In: Encyclopedia of Volcanoes, Sigurdsson H., Houghton B. F., McNutt S. R., Rymer H. and Stix J. (Eds) 2000, Academic Press, San Diego, 683–694 Search in Google Scholar

[37] Vergniolle S. and Manga M., Hawaiian and strombolian eruptions. In: Encyclopedia of Volcanoes, Sigurdsson H., Houghton B. F., McNutt S. R., Rymer H. and Stix J. (Eds) 2000, Academic Press, San Diego, 447–461 Search in Google Scholar

[38] Abdel Wahab A., Abul Maaty M. A., Stuart F. M., Awad H. and Kafafy A., The geology and geochronology of Al Wahbah maar crater, Harrat Kishb, Saudi Arabia, Quaternary Geochronology, 2013, DOI: http://dx.doi.org/10.1016/j.quageo.2013.01.008 [in press] 10.1016/j.quageo.2013.01.008Search in Google Scholar

[39] Heiken G. H. and Wohletz K. H., Volcanic Ash. 1986, University of California Press, Berkeley, 246 Search in Google Scholar

[40] Pardo N., Macias J. L., Giordano G., Cianfarra P., Avellan D. R. and Bellatreccia F., The approximately 1245 yr BP Asososca maar eruption; the youngest event along the Nejapa-Miraflores volcanic fault, western Managua, Nicaragua, Journal of Volcanology and Geothermal Research, 2009, 184, 292–312 http://dx.doi.org/10.1016/j.jvolgeores.2009.04.00610.1016/j.jvolgeores.2009.04.006Search in Google Scholar

[41] Németh K., Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation, Central European Journal of Geosciences, 2010, 2, 399–419 http://dx.doi.org/10.2478/v10085-010-0015-610.2478/v10085-010-0015-6Search in Google Scholar

[42] Buttner R., Dellino P., La Volpe L., Lorenz V. and Zimanowski B., Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments, Journal of Geophysical Research-Solid Earth, 2002, 107, pp. art. no.-2277 10.1029/2001JB000511Search in Google Scholar

[43] Mattsson H. B. and Tripoli B. A., Depositional characteristics and volcanic landforms in the Lake Natron-Engaruka monogenetic field, northern Tanzania, Journal of Volcanology and Geothermal Research, 2011, 203, 23–34 http://dx.doi.org/10.1016/j.jvolgeores.2011.04.01010.1016/j.jvolgeores.2011.04.010Search in Google Scholar

[44] Stoppa F., The San Venanzo maar and tuff ring, Umbria, Italy: Eruptive behaviour of a carbonatitemelilitite volcano. Bulletin of Volcanology, 1996, 57, 563–577 10.1007/s004450050113Search in Google Scholar

[45] Dellino P., De Astis G., La Volpe L., Mele D. and Sulpizio R., Quantitative hazard assessment of phreatomagmatic eruptions at Vulcano (Aeolian Islands, Southern Italy) as obtained by combining stratigraphy, event statistics and physical modelling, Journal of Volcanology and Geothermal Research, 2011, 201, 364–384 http://dx.doi.org/10.1016/j.jvolgeores.2010.06.00910.1016/j.jvolgeores.2010.06.009Search in Google Scholar

[46] Vazquez J. A. and Ort M. H., Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA, Journal Of Volcanology And Geothermal Research, 2006, 154, 222–236 http://dx.doi.org/10.1016/j.jvolgeores.2006.01.00310.1016/j.jvolgeores.2006.01.003Search in Google Scholar

[47] Valentine G. A. and Fisher R. V., Pyroclastic surges and blasts. In: Encyclopedia of Volcanoes, Sigurdsson H., Houghton B. F., McNutt S. R., Rymer H. and Stix J. (Eds) 2000, Academic Press, San Diego, 571–580 Search in Google Scholar

[48] Lorenz V., On the growth of maars and diatremes and its relevance to the formation of tuff rings, Bulletin of Volcanology, 1986, 48, 265–274 http://dx.doi.org/10.1007/BF0108175510.1007/BF01081755Search in Google Scholar

[49] Gutmann J. T., Strombolian and effusive activity as precursors to phreatomagmatism: eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico, Journal of Volcanology and Geothermal Research, 2002, 113, 345–356 http://dx.doi.org/10.1016/S0377-0273(01)00265-710.1016/S0377-0273(01)00265-7Search in Google Scholar

[50] Stoppa F., Rosatelli G., Schiazza M. and Tranquilli A., Hydrovolcanic vs magmatic processes in forming maars and associated pyroclasts: the Calatrava — Spain — case history. In: Updates in Volcanology, Stoppa F. (Eds) 2012, INTECH, Rijeka, Croatia, 3–26 10.5772/25264Search in Google Scholar

[51] Camp V. E., Roobol M. J. and Hooper P. R., The Arabian Continental Alkali Basalt Province. 3. Evolution of Harrat Kishb, Kingdom of Saudi-Arabia, Geological Society of America Bulletin, 1992, 104, 379–396 http://dx.doi.org/10.1130/0016-7606(1992)104<0379:TACABP>2.3.CO;210.1130/0016-7606(1992)104<0379:TACABP>2.3.CO;2Search in Google Scholar

[52] Vujičić M., Vasiljević D. A., Markovć S. B., Hose T. A., Lukić T., Hadžć O. and Janićević S., Preliminary geosite assessment model (GAM) and its application on Fruška Gora Mountain, potential geotourism destination of Serbia, Acta Geographica Slovenica-Geografski Zbornik, 2011, 51, 361–377 http://dx.doi.org/10.3986/AGS5130310.3986/AGS51303Search in Google Scholar

[53] Petrovic M. D., Vasiljevic D. A., Vujicic M. D., Hose T. A., Markovic S. B. and Lukic T., Global geopark and candidate — Comparative analysis of Papuk Mountain Geopark (Croatia) and Fruska Gora Mountain (Serbia) by using GAM model. Carpathian Journal of Earth and Environmental Sciences, 2013, 8, 105–116 Search in Google Scholar

Published Online: 2013-6-29
Published in Print: 2013-6-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13533-012-0125-8/html
Scroll to top button