Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 20, 2012

Homeostatic function of astrocytes: Ca2+ and Na+ signalling

  • Vladimir Parpura EMAIL logo and Alexei Verkhratsky

Abstract

The name astroglia unifies many non-excitable neural cells that act as primary homeostatic cells in the nervous system. Neuronal activity triggers multiple homeostatic responses of astroglia that include increase in metabolic activity and synthesis of neuronal preferred energy substrate lactate, clearance of neurotransmitters and buffering of extracellular K+ ions to name but a few. Many (if not all) of astroglial homeostatic responses are controlled by dynamic changes in the cytoplasmic concentration of two cations, Ca2+ and Na+. Intracellular concentration of these ions is tightly controlled by several transporters and can be rapidly affected by the activation of respective fluxes through ionic channels or ion exchangers. Here, we provide a comprehensive review of astroglial Ca2+ and Na+ signalling.

[1] Lenhossek M.v., Zur Kenntnis der Neuroglia des menschlichen Ruckenmarkes, Verh. Anat. Ges, 1891, 5, 193–221 Search in Google Scholar

[2] Lenhossek M.v., Der feinere Bau des Nervensystems im Lichte neuester Forschung, Fischer’s Medicinische Buchhandlung H. Kornfield, Berlin, 2nd Ed. 1895 Search in Google Scholar

[3] Kimelberg H.K., Functions of mature mammalian astrocytes: a current view, Neuroscientist, 2010, 16, 79–106 http://dx.doi.org/10.1177/107385840934259310.1177/1073858409342593Search in Google Scholar PubMed

[4] Kimelberg H.K., Nedergaard M., Functions of astrocytes and their potential as therapeutic targets, Neurotherapeutics, 2010, 7, 338–353 http://dx.doi.org/10.1016/j.nurt.2010.07.00610.1016/j.nurt.2010.07.006Search in Google Scholar PubMed PubMed Central

[5] Nedergaard M., Ransom B., Goldman S.A., New roles for astrocytes: redefining the functional architecture of the brain, Trends Neurosci., 2003, 26, 523–530 http://dx.doi.org/10.1016/j.tins.2003.08.00810.1016/j.tins.2003.08.008Search in Google Scholar PubMed

[6] Oberheim N.A., Goldman S.A., Nedergaard M., Heterogeneity of astrocytic form and function, Methods Mol. Biol., 2012, 814, 23–45 http://dx.doi.org/10.1007/978-1-61779-452-0_310.1007/978-1-61779-452-0_3Search in Google Scholar PubMed PubMed Central

[7] Oberheim N.A., Takano T., Han X., He W., Lin J.H., Wang F., et al., Uniquely hominid features of adult human astrocytes, J. Neurosci., 2009, 29, 3276–3287 http://dx.doi.org/10.1523/JNEUROSCI.4707-08.200910.1523/JNEUROSCI.4707-08.2009Search in Google Scholar PubMed PubMed Central

[8] Oberheim N.A., Wang X., Goldman S., Nedergaard M., Astrocytic complexity distinguishes the human brain, Trends Neurosci., 2006, 29, 547–553 http://dx.doi.org/10.1016/j.tins.2006.08.00410.1016/j.tins.2006.08.004Search in Google Scholar PubMed

[9] Verkhratsky A., Physiology of neuronal-glial networking, Neurochem. Int., 2010, 57, 332–343 http://dx.doi.org/10.1016/j.neuint.2010.02.00210.1016/j.neuint.2010.02.002Search in Google Scholar PubMed

[10] Verkhratsky A., Parpura V., Rodriguez J.J., Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”, Brain Res. Rev., 2011, 66, 133–151 http://dx.doi.org/10.1016/j.brainresrev.2010.05.00210.1016/j.brainresrev.2010.05.002Search in Google Scholar PubMed

[11] Verkhratsky A., Butt A., Glial Neurobiology. A textbook, John Wiley & Sons, Chichester, 2007 http://dx.doi.org/10.1002/978047051779610.1002/9780470517796Search in Google Scholar

[12] Verkhratsky A., Toescu E.C., Neuronal-glial networks as substrate for CNS integration, J. Cell. Mol. Med., 2006, 10, 826–836 http://dx.doi.org/10.1111/j.1582-4934.2006.tb00527.x10.1111/j.1582-4934.2006.tb00527.xSearch in Google Scholar PubMed

[13] Verkhratsky A., Rodriguez J.J., Parpura V., Calcium signalling in astroglia, Mol. Cell. Endocrinol., 2012, 353, 45–56 http://dx.doi.org/10.1016/j.mce.2011.08.03910.1016/j.mce.2011.08.039Search in Google Scholar

[14] Parpura V., Verkhratsky A., Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept, ASN Neuro, 2012, 4 10.1042/AN20120019Search in Google Scholar

[15] Parpura V., Heneka M.T., Montana V., Oliet S.H., Schousboe A., Haydon P.G., et al., Glial cells in (patho)physiology, J. Neurochem., 2012, 121, 4–27 http://dx.doi.org/10.1111/j.1471-4159.2012.07664.x10.1111/j.1471-4159.2012.07664.xSearch in Google Scholar

[16] Parpura V., Verkhratsky A., The astrocyte excitability brief: From receptors to gliotransmission, Neurochem. Int., 2012, 61, 610–621 http://dx.doi.org/10.1016/j.neuint.2011.12.00110.1016/j.neuint.2011.12.001Search in Google Scholar

[17] Hodgkin A.L., Huxley A.F., Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol., 1952, 116, 449–472 10.1113/jphysiol.1952.sp004717Search in Google Scholar

[18] Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 1952, 117, 500–544 10.1113/jphysiol.1952.sp004764Search in Google Scholar

[19] Katz B., Miledi R., Propagation of electric activity in motor nerve terminals, Proc. R. Soc. Lond. B. Biol. Sci., 1965, 161, 453–482 http://dx.doi.org/10.1098/rspb.1965.001510.1098/rspb.1965.0015Search in Google Scholar

[20] Katz B., Miledi R., The effect of calcium on acetylcholine release from motor nerve terminals, Proc. R. Soc. Lond. B Biol. Sci., 1965, 161, 496–503 http://dx.doi.org/10.1098/rspb.1965.001710.1098/rspb.1965.0017Search in Google Scholar

[21] Augustine G.J., How does calcium trigger neurotransmitter release?, Curr. Opin. Neurobiol., 2001, 11, 320–326 http://dx.doi.org/10.1016/S0959-4388(00)00214-210.1016/S0959-4388(00)00214-2Search in Google Scholar

[22] Barclay J.W., Morgan A., Burgoyne R.D., Calcium-dependent regulation of exocytosis, Cell Calcium, 2005, 38, 343–353 http://dx.doi.org/10.1016/j.ceca.2005.06.01210.1016/j.ceca.2005.06.012Search in Google Scholar PubMed

[23] Dermietzel R., Gap junction wiring: a ‘new’ principle in cell-to-cell communication in the nervous system?, Brain Res. Rev., 1998, 26, 176–183 http://dx.doi.org/10.1016/S0165-0173(97)00031-310.1016/S0165-0173(97)00031-3Search in Google Scholar

[24] Dermietzel R., Spray D.C., Gap junctions in the brain: where, what type, how many and why?, Trends Neurosci., 1993, 16, 186–192 http://dx.doi.org/10.1016/0166-2236(93)90151-B10.1016/0166-2236(93)90151-BSearch in Google Scholar

[25] Nagy J.I., Dudek F.E., Rash J.E., Update on connexins and gap junctions in neurons and glia in the mammalian nervous system, Brain Res. Rev., 2004, 47, 191–215 http://dx.doi.org/10.1016/j.brainresrev.2004.05.00510.1016/j.brainresrev.2004.05.005Search in Google Scholar

[26] Theis M., Sohl G., Eiberger J., Willecke K., Emerging complexities in identity and function of glial connexins, Trends Neurosci., 2005, 28, 188–195 http://dx.doi.org/10.1016/j.tins.2005.02.00610.1016/j.tins.2005.02.006Search in Google Scholar

[27] Dermietzel R., Gao Y., Scemes E., Vieira D., Urban M., Kremer M., et al., Connexin43 null mice reveal that astrocytes express multiple connexins, Brain Res. Rev., 2000, 32, 45–56 http://dx.doi.org/10.1016/S0165-0173(99)00067-310.1016/S0165-0173(99)00067-3Search in Google Scholar

[28] Guthrie P.B., Segal M., Kater S.B., Independent regulation of calcium revealed by imaging dendritic spines, Nature, 1991, 354, 76–80 http://dx.doi.org/10.1038/354076a010.1038/354076a0Search in Google Scholar PubMed

[29] Stout C.E., Costantin J.L., Naus C.C., Charles A.C., Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels, J. Biol. Chem., 2002, 277, 10482–10488 http://dx.doi.org/10.1074/jbc.M10990220010.1074/jbc.M109902200Search in Google Scholar PubMed

[30] Cotrina M.L., Lin J.H., Lopez-Garcia J.C., Naus C.C., Nedergaard M., ATP-mediated glia signaling, J. Neurosci., 2000, 20, 2835–2844 10.1523/JNEUROSCI.20-08-02835.2000Search in Google Scholar

[31] Arcuino G., Lin J.H., Takano T., Liu C., Jiang L., Gao Q., et al., Intercellular calcium signaling mediated by point-source burst release of ATP, Proc. Natl. Acad. Sci. USA, 2002, 99, 9840–9845 http://dx.doi.org/10.1073/pnas.15258859910.1073/pnas.152588599Search in Google Scholar PubMed PubMed Central

[32] Di Castro M.A., Chuquet J., Liaudet N., Bhaukaurally K., Santello M., Bouvier D., et al., Local Ca2+ detection and modulation of synaptic release by astrocytes, Nat. Neurosci., 2011, 14, 1276–1284 http://dx.doi.org/10.1038/nn.292910.1038/nn.2929Search in Google Scholar PubMed

[33] Panatier A., Vallee J., Haber M., Murai K.K., Lacaille J.C., Robitaille R., Astrocytes are endogenous regulators of basal transmission at central synapses, Cell, 2011, 146, 785–798 http://dx.doi.org/10.1016/j.cell.2011.07.02210.1016/j.cell.2011.07.022Search in Google Scholar PubMed

[34] Shigetomi E., Tong X., Kwan K.Y., Corey D.P., Khakh B.S., TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3, Nat. Neurosci., 2011, 15, 70–80 http://dx.doi.org/10.1038/nn.300010.1038/nn.3000Search in Google Scholar PubMed PubMed Central

[35] Case R.M., Eisner D., Gurney A., Jones O., Muallem S., Verkhratsky A., Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system, Cell Calcium, 2007, 42, 345–350 http://dx.doi.org/10.1016/j.ceca.2007.05.00110.1016/j.ceca.2007.05.001Search in Google Scholar PubMed

[36] Petersen O.H., Michalak M., Verkhratsky A., Calcium signalling: past, present and future, Cell Calcium, 2005, 38, 161–169 http://dx.doi.org/10.1016/j.ceca.2005.06.02310.1016/j.ceca.2005.06.023Search in Google Scholar PubMed

[37] Solovyova N., Verkhratsky A., Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+]_recordings in single rat sensory neurones, Pflugers Arch., 2003, 446, 447–454 http://dx.doi.org/10.1007/s00424-003-1094-z10.1007/s00424-003-1094-zSearch in Google Scholar PubMed

[38] Petersen O.H., Verkhratsky A., Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells, Cell Calcium, 2007, 42, 373–378 http://dx.doi.org/10.1016/j.ceca.2007.05.01210.1016/j.ceca.2007.05.012Search in Google Scholar PubMed

[39] Altschuld R.A., Hohl C.M., Castillo L.C., Garleb A.A., Starling R.C., Brierley G.P., Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes, Am. J. Physiol., 1992, 262, H1699–1704 10.1152/ajpheart.1992.262.6.H1699Search in Google Scholar PubMed

[40] Nicholls D.G., Mitochondria and calcium signaling, Cell Calcium, 2005, 38, 311–317 http://dx.doi.org/10.1016/j.ceca.2005.06.01110.1016/j.ceca.2005.06.011Search in Google Scholar PubMed

[41] Berridge M.J., Bootman M.D., Roderick H.L., Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell. Biol., 2003, 4, 517–529 http://dx.doi.org/10.1038/nrm115510.1038/nrm1155Search in Google Scholar PubMed

[42] Berridge M.J., Lipp P., Bootman M.D., The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell. Biol., 2000, 1, 11–21 http://dx.doi.org/10.1038/3503603510.1038/35036035Search in Google Scholar PubMed

[43] Burdakov D., Petersen O.H., Verkhratsky A., Intraluminal calcium as a primary regulator of endoplasmic reticulum function, Cell Calcium, 2005, 38, 303–310 http://dx.doi.org/10.1016/j.ceca.2005.06.01010.1016/j.ceca.2005.06.010Search in Google Scholar

[44] Guerrero-Hernandez A., Dagnino-Acosta A., Verkhratsky A., An intelligent sarco-endoplasmic reticulum Ca2+ store: release and leak channels have differential access to a concealed Ca2+ pool, Cell Calcium, 2010, 48, 143–149 http://dx.doi.org/10.1016/j.ceca.2010.08.00110.1016/j.ceca.2010.08.001Search in Google Scholar

[45] Kopach O., Kruglikov I., Pivneva T., Voitenko N., Verkhratsky A., Fedirko N., Mitochondria adjust Ca(2+) signaling regime to a pattern of stimulation in salivary acinar cells, Biochim. Biophys. Acta, 2011, 1813, 1740–1748 http://dx.doi.org/10.1016/j.bbamcr.2011.03.01610.1016/j.bbamcr.2011.03.016Search in Google Scholar

[46] Parekh A.B., Mitochondrial regulation of store-operated CRAC channels, Cell Calcium, 2008, 44, 6–13 http://dx.doi.org/10.1016/j.ceca.2007.12.00610.1016/j.ceca.2007.12.006Search in Google Scholar

[47] Charles A.C., Dirksen E.R., Merrill J.E., Sanderson M.J., Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin, Glia, 1993, 7, 134–145 http://dx.doi.org/10.1002/glia.44007020310.1002/glia.440070203Search in Google Scholar

[48] Charles A.C., Merrill J.E., Dirksen E.R., Sanderson M.J., Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate, Neuron, 1991, 6, 983–992 http://dx.doi.org/10.1016/0896-6273(91)90238-U10.1016/0896-6273(91)90238-USearch in Google Scholar

[49] Cornell Bell A.H., Finkbeiner S.M., Cooper M.S., Smith S.J., Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, 1990, 247, 470–473 http://dx.doi.org/10.1126/science.196785210.1126/science.1967852Search in Google Scholar

[50] Finkbeiner S.M., Glial calcium, Glia, 1993, 9, 83–104 http://dx.doi.org/10.1002/glia.44009020210.1002/glia.440090202Search in Google Scholar

[51] Verkhratsky A., Kettenmann H., Calcium signalling in glial cells, Trends Neurosci., 1996, 19, 346–352 http://dx.doi.org/10.1016/0166-2236(96)10048-510.1016/0166-2236(96)10048-5Search in Google Scholar

[52] Verkhratsky A., Orkand R.K., Kettenmann H., Glial calcium: homeostasis and signaling function, Physiol. Rev., 1998, 78, 99–141 10.1152/physrev.1998.78.1.99Search in Google Scholar PubMed

[53] Kirischuk S., Moller T., Voitenko N., Kettenmann H., Verkhratsky A., ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells, J. Neurosci., 1995, 15, 7861–7871 10.1523/JNEUROSCI.15-12-07861.1995Search in Google Scholar

[54] Kirischuk S., Tuschick S., Verkhratsky A., Kettenmann H., Calcium signalling in mouse Bergmann glial cells mediated by a1-adrenoreceptors and H1 histamine receptors, Eur. J. Neurosci., 1996, 8, 1198–1208 http://dx.doi.org/10.1111/j.1460-9568.1996.tb01288.x10.1111/j.1460-9568.1996.tb01288.xSearch in Google Scholar

[55] Kirischuk S., Kirchhoff F., Matyash V., Kettenmann H., Verkhratsky A., Glutamate-triggered calcium signalling in mouse bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release, Neuroscience, 1999, 92, 1051–1059 http://dx.doi.org/10.1016/S0306-4522(99)00067-610.1016/S0306-4522(99)00067-6Search in Google Scholar

[56] Porter J.T., McCarthy K.D., Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ, J. Neurochem., 1995, 65, 1515–1523 http://dx.doi.org/10.1046/j.1471-4159.1995.65041515.x10.1046/j.1471-4159.1995.65041515.xSearch in Google Scholar

[57] Zorec R., Araque A., Carmignoto G., Haydon P.G., Verkhratsky A., Parpura V., Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route, ASN Neuro, 2012, 4, pii: e00080 http://dx.doi.org/10.1042/AN2011006110.1042/AN20110061Search in Google Scholar

[58] Verkhratsky A., Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons, Physiol. Rev., 2005, 85, 201–279 http://dx.doi.org/10.1152/physrev.00004.200410.1152/physrev.00004.2004Search in Google Scholar

[59] Michalak M., Robert Parker J.M., Opas M., Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum, Cell Calcium, 2002, 32, 269–278 http://dx.doi.org/10.1016/S014341600200188410.1016/S0143416002001884Search in Google Scholar

[60] Baumann O., Walz B., Endoplasmic reticulum of animal cells and its organization into structural and functional domains, Int. Rev. Cytol., 2001, 205, 149–214 http://dx.doi.org/10.1016/S0074-7696(01)05004-510.1016/S0074-7696(01)05004-5Search in Google Scholar

[61] Berridge M.J., The endoplasmic reticulum: a multifunctional signaling organelle, Cell Calcium, 2002, 32, 235–249 http://dx.doi.org/10.1016/S014341600200182310.1016/S0143416002001823Search in Google Scholar

[62] Alonso M.T., Barrero M.J., Michelena P., Carnicero E., Cuchillo I., Garcia A.G., et al., Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin, J. Cell Biol., 1999, 144, 241–254 http://dx.doi.org/10.1083/jcb.144.2.24110.1083/jcb.144.2.241Search in Google Scholar PubMed PubMed Central

[63] Mogami H., Tepikin A.V., Petersen O.H., Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen, EMBO J., 1998, 17, 435–442 http://dx.doi.org/10.1093/emboj/17.2.43510.1093/emboj/17.2.435Search in Google Scholar

[64] Solovyova N., Verkhratsky A., Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches, J. Neurosci. Methods, 2002, 122, 1–12 http://dx.doi.org/10.1016/S0165-0270(02)00300-X10.1016/S0165-0270(02)00300-XSearch in Google Scholar

[65] Solovyova N., Veselovsky N., Toescu E.C., Verkhratsky A., Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry, EMBO J., 2002, 21, 622–630 http://dx.doi.org/10.1093/emboj/21.4.62210.1093/emboj/21.4.622Search in Google Scholar

[66] Verkhratsky A., Petersen O.H., The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death, Eur. J. Pharmacol., 2002, 447, 141–154 http://dx.doi.org/10.1016/S0014-2999(02)01838-110.1016/S0014-2999(02)01838-1Search in Google Scholar

[67] Agulhon C., Petravicz J., McMullen A.B., Sweger E.J., Minton S.K., Taves S.R., et al., What is the role of astrocyte calcium in neurophysiology?, Neuron, 2008, 59, 932–946 http://dx.doi.org/10.1016/j.neuron.2008.09.00410.1016/j.neuron.2008.09.004Search in Google Scholar

[68] Matyash M., Matyash V., Nolte C., Sorrentino V., Kettenmann H., Requirement of functional ryanodine receptor type 3 for astrocyte migration, FASEB J., 2002, 16, 84–86 10.1096/fj.01-0380fjeSearch in Google Scholar

[69] Verkhratsky A., Solovyova N., Toescu E.C., Calcium excitability of glial cells, In: Volterra A., Haydon P., Magistretti P. (Eds.), Glia in synaptic transmission, OUP, Oxford, 2002 Search in Google Scholar

[70] Beck A., Nieden R.Z., Schneider H.P., Deitmer J.W., Calcium release from intracellular stores in rodent astrocytes and neurons in situ, Cell Calcium, 2004, 35, 47–58 http://dx.doi.org/10.1016/S0143-4160(03)00171-410.1016/S0143-4160(03)00171-4Search in Google Scholar

[71] Hua X., Malarkey E.B., Sunjara V., Rosenwald S.E., Li W.H., Parpura V., Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes, J. Neurosci. Res., 2004, 76, 86–97 http://dx.doi.org/10.1002/jnr.2006110.1002/jnr.20061Search in Google Scholar

[72] Giaume C., Venance L., Intercellular calcium signaling and gap junctional communication in astrocytes, Glia, 1998, 24, 50–64 http://dx.doi.org/10.1002/(SICI)1098-1136(199809)24:1<50::AID-GLIA6>3.0.CO;2-410.1002/(SICI)1098-1136(199809)24:1<50::AID-GLIA6>3.0.CO;2-4Search in Google Scholar

[73] Scemes E., Giaume C., Astrocyte calcium waves: what they are and what they do, Glia, 2006, 54, 716–725 http://dx.doi.org/10.1002/glia.2037410.1002/glia.20374Search in Google Scholar

[74] Verderio C., Bruzzone S., Zocchi E., Fedele E., Schenk U., De Flora A., et al., Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes, J. Neurochem., 2001, 78, 646–657 http://dx.doi.org/10.1046/j.1471-4159.2001.00455.x10.1046/j.1471-4159.2001.00455.xSearch in Google Scholar PubMed

[75] Bruzzone S., Verderio C., Schenk U., Fedele E., Zocchi E., Matteoli M., et al., Glutamate-mediated overexpression of CD38 in astrocytes cultured with neurones, J. Neurochem., 2004, 89, 264–272 http://dx.doi.org/10.1111/j.1471-4159.2003.02326.x10.1111/j.1471-4159.2003.02326.xSearch in Google Scholar PubMed

[76] Heidemann A.C., Schipke C.G., Kettenmann H., Extracellular application of nicotinic acid adenine dinucleotide phosphate induces Ca2+ signaling in astrocytes in situ, J. Biol. Chem., 2005, 280, 35630–35640 http://dx.doi.org/10.1074/jbc.M50733820010.1074/jbc.M507338200Search in Google Scholar PubMed

[77] Singaravelu K., Deitmer J.W., Calcium mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) in rat astrocytes, Cell Calcium, 2006, 39, 143–153 http://dx.doi.org/10.1016/j.ceca.2005.10.00110.1016/j.ceca.2005.10.001Search in Google Scholar PubMed

[78] Barcelo-Torns M., Lewis A.M., Gubern A., Barneda D., Bloor-Young D., Picatoste F., et al., NAADP mediates ATP-induced Ca2+ signals in astrocytes, FEBS Lett., 2011, 585, 2300–2306 http://dx.doi.org/10.1016/j.febslet.2011.05.06210.1016/j.febslet.2011.05.062Search in Google Scholar PubMed

[79] Malarkey E.B., Parpura V., Mechanisms of transmitter release from astrocytes, In: Parpura V. Haydon P.G. (Eds.), Astrocytes in (patho) physiology of the nervous system, Springer, New York, 2009 10.1007/978-0-387-79492-1_12Search in Google Scholar

[80] Parpura V., Grubisic V., Verkhratsky A., Ca2+ sources for the exocytotic release of glutamate from astrocytes, Biochim. Biophys. Acta, 2011, 1813, 984–991 http://dx.doi.org/10.1016/j.bbamcr.2010.11.00610.1016/j.bbamcr.2010.11.006Search in Google Scholar PubMed

[81] D’Ascenzo M., Fellin T., Terunuma M., Revilla-Sanchez R., Meaney D.F., Auberson Y.P., et al., mGluR5 stimulates gliotransmission in the nucleus accumbens, Proc. Natl. Acad. Sci. USA, 2007, 104, 1995–2000 http://dx.doi.org/10.1073/pnas.060940810410.1073/pnas.0609408104Search in Google Scholar PubMed PubMed Central

[82] Fellin T., Pascual O., Gobbo S., Pozzan T., Haydon P.G., Carmignoto G., Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors, Neuron, 2004, 43, 729–743 http://dx.doi.org/10.1016/j.neuron.2004.08.01110.1016/j.neuron.2004.08.011Search in Google Scholar PubMed

[83] Shigetomi E., Bowser D.N., Sofroniew M.V., Khakh B.S., Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons, J. Neurosci., 2008, 28, 6659–6663 http://dx.doi.org/10.1523/JNEUROSCI.1717-08.200810.1523/JNEUROSCI.1717-08.2008Search in Google Scholar PubMed PubMed Central

[84] Putney J.W.Jr., A model for receptor-regulated calcium entry, Cell Calcium, 1986, 7, 1–12 http://dx.doi.org/10.1016/0143-4160(86)90026-610.1016/0143-4160(86)90026-6Search in Google Scholar

[85] Putney J.W.Jr., Capacitative calcium entry revisited, Cell Calcium, 1990, 11, 611–624 http://dx.doi.org/10.1016/0143-4160(90)90016-N10.1016/0143-4160(90)90016-NSearch in Google Scholar

[86] Parekh A.B., Putney J.W.Jr., Store-operated calcium channels, Physiol. Rev., 2005, 85, 757–810 http://dx.doi.org/10.1152/physrev.00057.200310.1152/physrev.00057.2003Search in Google Scholar

[87] Feske S., Gwack Y., Prakriya M., Srikanth S., Puppel S.H., Tanasa B., et al., A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function, Nature, 2006, 441, 179–185 http://dx.doi.org/10.1038/nature0470210.1038/nature04702Search in Google Scholar

[88] Putney J.W.Jr., Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here), Cell Calcium, 2007, 42, 103–110 http://dx.doi.org/10.1016/j.ceca.2007.01.01110.1016/j.ceca.2007.01.011Search in Google Scholar

[89] Smyth J.T., Dehaven W.I., Jones B.F., Mercer J.C., Trebak M., Vazquez G., et al., Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP, Biochim. Biophys. Acta, 2006, 1763, 1147–1160 http://dx.doi.org/10.1016/j.bbamcr.2006.08.05010.1016/j.bbamcr.2006.08.050Search in Google Scholar

[90] Pivneva T., Haas B., Reyes-Haro D., Laube G., Veh R.W., Nolte C., et al., Store-operated Ca2+ entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ, Cell Calcium, 2008, 43, 591–601 http://dx.doi.org/10.1016/j.ceca.2007.10.00410.1016/j.ceca.2007.10.004Search in Google Scholar

[91] Tuschick S., Kirischuk S., Kirchhoff F., Liefeldt L., Paul M., Verkhratsky A., et al., Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals, Cell Calcium, 1997, 21, 409–419 http://dx.doi.org/10.1016/S0143-4160(97)90052-X10.1016/S0143-4160(97)90052-XSearch in Google Scholar

[92] Golovina V.A., Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum, J. Physiol., 2005, 564, 737–749 http://dx.doi.org/10.1113/jphysiol.2005.08503510.1113/jphysiol.2005.085035Search in Google Scholar PubMed PubMed Central

[93] Grimaldi M., Maratos M., Verma A., Transient receptor potential channel activation causes a novel form of [Ca2+]I oscillations and is not involved in capacitative Ca2+ entry in glial cells, J. Neurosci., 2003, 23, 4737–4745 10.1523/JNEUROSCI.23-11-04737.2003Search in Google Scholar

[94] Pizzo P., Burgo A., Pozzan T., Fasolato C., Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes, J. Neurochem., 2001, 79, 98–109 http://dx.doi.org/10.1046/j.1471-4159.2001.00539.x10.1046/j.1471-4159.2001.00539.xSearch in Google Scholar

[95] Malarkey E.B., Ni Y., Parpura V., Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes, Glia, 2008, 56, 821–835 http://dx.doi.org/10.1002/glia.2065610.1002/glia.20656Search in Google Scholar

[96] Moreno C., Sampieri A., Vivas O., Pena-Segura C., Vaca L., STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes, Cell Calcium, 2012, in press, dx.doi.org/10.1016/j.ceca.2012.1008.1004 10.1016/j.ceca.2012.08.004Search in Google Scholar

[97] Lalo U., Pankratov Y., Parpura V., Verkhratsky A., Ionotropic receptors in neuronal-astroglial signalling: What is the role of „excitable“ molecules in non-excitable cells, Biochim. Biophys. Acta, 2011, 1813, 992–1002 http://dx.doi.org/10.1016/j.bbamcr.2010.09.00710.1016/j.bbamcr.2010.09.007Search in Google Scholar

[98] Verkhratsky A., Steinhauser C., Ion channels in glial cells, Brain Res. Rev., 2000, 32, 380–412 http://dx.doi.org/10.1016/S0165-0173(99)00093-410.1016/S0165-0173(99)00093-4Search in Google Scholar

[99] Verkhratsky A., Krishtal O.A., Burnstock G., Purinoceptors on neuroglia, Mol. Neurobiol., 2009, 39, 190–208 http://dx.doi.org/10.1007/s12035-009-8063-210.1007/s12035-009-8063-2Search in Google Scholar

[100] Muller T., Moller T., Berger T., Schnitzer J., Kettenmann H., Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells, Science, 1992, 256, 1563–1566 http://dx.doi.org/10.1126/science.131796910.1126/science.1317969Search in Google Scholar

[101] Seifert G., Steinhauser C., Ionotropic glutamate receptors in astrocytes, Prog. Brain Res., 2001, 132, 287–299 http://dx.doi.org/10.1016/S0079-6123(01)32083-610.1016/S0079-6123(01)32083-6Search in Google Scholar

[102] Lalo U., Palygin O., North R.A., Verkhratsky A., Pankratov Y., Agedependent remodelling of ionotropic signalling in cortical astroglia, Aging Cell, 2011, 10, 392–402 http://dx.doi.org/10.1111/j.1474-9726.2011.00682.x10.1111/j.1474-9726.2011.00682.xSearch in Google Scholar PubMed

[103] Lalo U., Pankratov Y., Kirchhoff F., North R.A., Verkhratsky A., NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes, J. Neurosci., 2006, 26, 2673–2683 http://dx.doi.org/10.1523/JNEUROSCI.4689-05.200610.1523/JNEUROSCI.4689-05.2006Search in Google Scholar PubMed PubMed Central

[104] Verkhratsky A., Kirchhoff F., NMDA receptors in glia, Neuroscientist, 2007, 13, 28–37 http://dx.doi.org/10.1177/107385840629427010.1177/1073858406294270Search in Google Scholar PubMed

[105] Oliveira J.F., Riedel T., Leichsenring A., Heine C., Franke H., Krugel U., et al., Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations, Cereb. Cortex, 2011, 21, 806–820 http://dx.doi.org/10.1093/cercor/bhq15410.1093/cercor/bhq154Search in Google Scholar PubMed

[106] Palygin O., Lalo U., Verkhratsky A., Pankratov Y., Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes, Cell Calcium, 2010, 48, 225–231 http://dx.doi.org/10.1016/j.ceca.2010.09.00410.1016/j.ceca.2010.09.004Search in Google Scholar PubMed

[107] Lalo U., Pankratov Y., Wichert S.P., Rossner M.J., North R.A., Kirchhoff F., et al., P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes, J. Neurosci., 2008, 28, 5473–5480 http://dx.doi.org/10.1523/JNEUROSCI.1149-08.200810.1523/JNEUROSCI.1149-08.2008Search in Google Scholar PubMed PubMed Central

[108] Franke H., Verkhratsky A., Burnstock G., Illes P., Pathophysiology of astroglial purinergic signalling, Purinergic Signal., 2012, 8, 629–657 http://dx.doi.org/10.1007/s11302-012-9300-010.1007/s11302-012-9300-0Search in Google Scholar PubMed PubMed Central

[109] Tai C., Zhu S., Zhou N., TRPA1: the central molecule for chemical sensing in pain pathway?, J. Neurosci., 2008, 28, 1019–1021 http://dx.doi.org/10.1523/JNEUROSCI.5237-07.200810.1523/JNEUROSCI.5237-07.2008Search in Google Scholar PubMed PubMed Central

[110] McNamara C.R., Mandel-Brehm J., Bautista D.M., Siemens J., Deranian K.L., Zhao M., et al., TRPA1 mediates formalin-induced pain, Proc. Natl. Acad. Sci. USA, 2007, 104, 13525–13530 http://dx.doi.org/10.1073/pnas.070592410410.1073/pnas.0705924104Search in Google Scholar PubMed PubMed Central

[111] McMahon S.B., Wood J.N., Increasingly irritable and close to tears: TRPA1 in inflammatory pain, Cell, 2006, 124, 1123–1125 http://dx.doi.org/10.1016/j.cell.2006.03.00610.1016/j.cell.2006.03.006Search in Google Scholar PubMed

[112] Sawada Y., Hosokawa H., Hori A., Matsumura K., Kobayashi S., Cold sensitivity of recombinant TRPA1 channels, Brain Res., 2007, 1160, 39–46 http://dx.doi.org/10.1016/j.brainres.2007.05.04710.1016/j.brainres.2007.05.047Search in Google Scholar PubMed

[113] Gracheva E.O., Ingolia N.T., Kelly Y.M., Cordero-Morales J.F., Hollopeter G., Chesler A.T., et al., Molecular basis of infrared detection by snakes, Nature, 2010, 464, 1006–1011 http://dx.doi.org/10.1038/nature0894310.1038/nature08943Search in Google Scholar PubMed PubMed Central

[114] Rose C.R., Ransom B.R., Intracellular sodium homeostasis in rat hippocampal astrocytes, J. Physiol., 1996, 491, 291–305 10.1113/jphysiol.1996.sp021216Search in Google Scholar

[115] Reyes R.C., Verkhratsky A., Parpura V., Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes, ASN Neuro, 2012, 4, e00075 http://dx.doi.org/10.1042/AN2011005910.1042/AN20110059Search in Google Scholar

[116] Unichenko P., Myakhar O., Kirischuk S., Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes, Glia, 2012, 60, 605–614 http://dx.doi.org/10.1002/glia.2229410.1002/glia.22294Search in Google Scholar

[117] Kirischuk S., Parpura V., Verkhratsky A., Sodium dynamics: another key to astroglial excitability?, Trends Neurosci, 2012, 35, 497–506 http://dx.doi.org/10.1016/j.tins.2012.04.00310.1016/j.tins.2012.04.003Search in Google Scholar

[118] Kiedrowski L., Wroblewski J.T., Costa E., Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate, Mol. Pharmacol., 1994, 45, 1050–1054 Search in Google Scholar

[119] Knopfel T., Guatteo E., Bernardi G., Mercuri N.B., Hyperpolarization induces a rise in intracellular sodium concentration in dopamine cells of the substantia nigra pars compacta, Eur. J. Neurosci., 1998, 10, 1926–1929 http://dx.doi.org/10.1046/j.1460-9568.1998.00195.x10.1046/j.1460-9568.1998.00195.xSearch in Google Scholar

[120] Pisani A., Calabresi P., Tozzi A., Bernardi G., Knopfel T., Early sodium elevations induced by combined oxygen and glucose deprivation in pyramidal cortical neurons, Eur. J. Neurosci., 1998, 10, 3572–3574 http://dx.doi.org/10.1046/j.1460-9568.1998.00398.x10.1046/j.1460-9568.1998.00398.xSearch in Google Scholar

[121] Kimelberg H.K., Pang S., Treble D.H., Excitatory amino acidstimulated uptake of 22Na+ in primary astrocyte cultures, J. Neurosci., 1989, 9, 1141–1149 10.1523/JNEUROSCI.09-04-01141.1989Search in Google Scholar

[122] Bernardinelli Y., Magistretti P.J., Chatton J.Y., Astrocytes generate Na+-mediated metabolic waves, Proc. Natl. Acad. Sci. USA, 2004, 101, 14937–14942 http://dx.doi.org/10.1073/pnas.040531510110.1073/pnas.0405315101Search in Google Scholar

[123] Rose C.R., Ransom B.R., Gap junctions equalize intracellular Na+ concentration in astrocytes, Glia, 1997, 20, 299–307 http://dx.doi.org/10.1002/(SICI)1098-1136(199708)20:4<299::AID-GLIA3>3.0.CO;2-110.1002/(SICI)1098-1136(199708)20:4<299::AID-GLIA3>3.0.CO;2-1Search in Google Scholar

[124] Kirischuk S., Kettenmann H., Verkhratsky A., Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ, FASEB J, 1997, 11, 566–572 10.1096/fasebj.11.7.9212080Search in Google Scholar

[125] Kirischuk S., Kettenmann H., Verkhratsky A., Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells, Pflugers Arch., 2007, 454, 245–252 http://dx.doi.org/10.1007/s00424-007-0207-510.1007/s00424-007-0207-5Search in Google Scholar PubMed

[126] Langer J., Stephan J., Theis M., Rose C.R., Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ, Glia, 2012, 60, 239–252 http://dx.doi.org/10.1002/glia.2125910.1002/glia.21259Search in Google Scholar PubMed

[127] Bennay M., Langer J., Meier S.D., Kafitz K.W., Rose C.R., Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission, Glia, 2008, 56, 1138–1149 http://dx.doi.org/10.1002/glia.2068510.1002/glia.20685Search in Google Scholar PubMed

[128] Langer J., Rose C.R., Synaptically induced sodium signals in hippocampal astrocytes in situ, J. Physiol., 2009, 587, 5859–5877 http://dx.doi.org/10.1113/jphysiol.2009.18227910.1113/jphysiol.2009.182279Search in Google Scholar PubMed PubMed Central

[129] Shimizu H., Watanabe E., Hiyama T.Y., Nagakura A., Fujikawa A., Okado H., et al., Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing, Neuron, 2007, 54, 59–72 http://dx.doi.org/10.1016/j.neuron.2007.03.01410.1016/j.neuron.2007.03.014Search in Google Scholar PubMed

[130] Hediger M.A., Romero M.F., Peng J.B., Rolfs A., Takanaga H., Bruford E.A., The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction, Pflugers Arch., 2004, 447, 465–468 http://dx.doi.org/10.1007/s00424-003-1192-y10.1007/s00424-003-1192-ySearch in Google Scholar PubMed

[131] Ren Q., Chen K., Paulsen I.T., TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels, Nucleic Acids Res., 2007, 35, D274–D279 http://dx.doi.org/10.1093/nar/gkl92510.1093/nar/gkl925Search in Google Scholar PubMed PubMed Central

[132] Lytton J., Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport, Biochem. J., 2007, 406, 365–382 http://dx.doi.org/10.1042/BJ2007061910.1042/BJ20070619Search in Google Scholar PubMed

[133] Minelli A., Castaldo P., Gobbi P., Salucci S., Magi S., Amoroso S., Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat, Cell Calcium, 2007, 41, 221–234 http://dx.doi.org/10.1016/j.ceca.2006.06.00410.1016/j.ceca.2006.06.004Search in Google Scholar PubMed

[134] Paluzzi S., Alloisio S., Zappettini S., Milanese M., Raiteri L., Nobile M., et al., Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization, J. Neurochem., 2007, 103, 1196–1207 http://dx.doi.org/10.1111/j.1471-4159.2007.04826.x10.1111/j.1471-4159.2007.04826.xSearch in Google Scholar PubMed

[135] Rojas H., Colina C., Ramos M., Benaim G., Jaffe E.H., Caputo C., et al., Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Cai2+-induced Ca2+ release in rat cerebellar Type-1 astrocytes, J. Neurochem., 2007, 100, 1188–1202 http://dx.doi.org/10.1111/j.1471-4159.2006.04303.x10.1111/j.1471-4159.2006.04303.xSearch in Google Scholar

[136] Danbolt N.C., Glutamate uptake, Progr. Neurobiol., 2001, 65, 1–105 http://dx.doi.org/10.1016/S0301-0082(00)00067-810.1016/S0301-0082(00)00067-8Search in Google Scholar

[137] Hertz L., Zielke H.R., Astrocytic control of glutamatergic activity: astrocytes as stars of the show, Trends Neurosci., 2004, 27, 735–743 http://dx.doi.org/10.1016/j.tins.2004.10.00810.1016/j.tins.2004.10.008Search in Google Scholar

[138] Olabarria M., Noristani H.N., Verkhratsky A., Rodriguez J.J., Agedependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission?, Mol. Neurodegener., 2011, 6, 55 http://dx.doi.org/10.1186/1750-1326-6-5510.1186/1750-1326-6-55Search in Google Scholar

[139] Attwell D., Barbour B., Szatkowski M., Nonvesicular release of neurotransmitter, Neuron, 1993, 11, 401–407 http://dx.doi.org/10.1016/0896-6273(93)90145-H10.1016/0896-6273(93)90145-HSearch in Google Scholar

[140] Palty R., Silverman W.F., Hershfinkel M., Caporale T., Sensi S.L., Parnis J., et al., NCLX is an essential component of mitochondrial Na+/Ca2+ exchange, Proc. Natl. Acad Sci. USA, 2010, 107, 436–441 http://dx.doi.org/10.1073/pnas.090809910710.1073/pnas.0908099107Search in Google Scholar PubMed PubMed Central

[141] Mackenzie B., Erickson J.D., Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family, Pflugers Arch., 2004, 447, 784–795 http://dx.doi.org/10.1007/s00424-003-1117-910.1007/s00424-003-1117-9Search in Google Scholar PubMed

[142] Ortinski P.I., Dong J., Mungenast A., Yue C., Takano H., Watson D.J., et al., Selective induction of astrocytic gliosis generates deficits in neuronal inhibition, Nat. Neurosci., 2010, 13, 584–591 http://dx.doi.org/10.1038/nn.253510.1038/nn.2535Search in Google Scholar PubMed PubMed Central

[143] Benz B., Grima G., Do K.Q., Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling, Neuroscience, 2004, 124, 377–386 http://dx.doi.org/10.1016/j.neuroscience.2003.08.06710.1016/j.neuroscience.2003.08.067Search in Google Scholar PubMed

[144] Belanger M., Allaman I., Magistretti P.J., Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation, Cell Metab., 2011, 14, 724–738 http://dx.doi.org/10.1016/j.cmet.2011.08.01610.1016/j.cmet.2011.08.016Search in Google Scholar PubMed

[145] Pellerin L., Magistretti P.J., Sweet sixteen for ANLS, J. Cereb. Blood Flow Metab., 2012, E-pub ahead of print, doi: 10.1038/jcbfm.2011.149 10.1038/jcbfm.2011.149Search in Google Scholar PubMed PubMed Central

[146] Suzuki A., Stern S.A., Bozdagi O., Huntley G.W., Walker R.H., Magistretti P.J., et al., Astrocyte-neuron lactate transport is required for long-term memory formation, Cell, 2011, 144, 810–823 http://dx.doi.org/10.1016/j.cell.2011.02.01810.1016/j.cell.2011.02.018Search in Google Scholar PubMed PubMed Central

Published Online: 2012-11-20
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 11.5.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-012-0040-y/html
Scroll to top button