Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 26, 2011

Recent advances in psychoneuroimmunology: Inflammation in psychiatric disorders

  • Monojit Debnath EMAIL logo , Karen Doyle , Camilla Langan , Colm McDonald , Brian Leonard and Dara Cannon

Abstract

Psychiatric disorders are common and complex and their precise biological underpinnings remain elusive. Multiple epidemiological, molecular, genetic and gene expression studies suggest that immune system dysfunction may contribute to the risk for developing psychiatric disorders including schizophrenia, bipolar disorder, and major depressive disorder. However, the precise mechanisms by which inflammation-related events confer such risk are unclear. In this review, we examine the peripheral and central evidence for inflammation in psychiatric disorders and the potential molecular mechanisms implicated including inhibition of neurogenesis, apoptosis, the HPA-axis, the role of brain-derived neurotrophic factor and the interplay between the glutamatergic, dopaminergic and serotonergic neurotransmitter systems.

[1] Kendler K.S., Prescott C.A., Myers J., Neale M.C., The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women, Arch. Gen. Psychiatry, 2003, 60, 929–937 http://dx.doi.org/10.1001/archpsyc.60.9.92910.1001/archpsyc.60.9.929Search in Google Scholar

[2] Muller N., Schwarz M.J., Immune system and schizophrenia, Curr. Immunol. Rev., 2010, 6, 213–220 http://dx.doi.org/10.2174/15733951079182367310.2174/157339510791823673Search in Google Scholar

[3] Stefansson H., Ophoff R.A., Steinberg S., Andreassen O.A., Cichon S., Rujescu D., et al., Common variants conferring risk of schizophrenia, Nature, 460, 744–747 Search in Google Scholar

[4] Shi J., Levinson D.F., Duan J., Sanders A.R. Zheng Y., Peer I., et al., Common variants on chromosome 6p22.1 are associated with schizophrenia, Nature, 2009, 460, 753–757 10.1038/nature08192Search in Google Scholar

[5] Williams H.J., Craddock N., Russo G., Hamshere M., Moskvina V., Dwyer R., et al., Most genome wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross traditional diagnostic boundaries, Hum. Mol. Genet., 2011, 20, 387–391 http://dx.doi.org/10.1093/hmg/ddq47110.1093/hmg/ddq471Search in Google Scholar

[6] Leonard B.E., The immune system, depression and the action of antidepressants, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25, 767–780 http://dx.doi.org/10.1016/S0278-5846(01)00155-510.1016/S0278-5846(01)00155-5Search in Google Scholar

[7] Debnath M., Das S.K., Bera N.K., Nayak C.R., Chaudhuri T.K., Genetic associations between delusional disorder and paranoid schizophrenia: a novel etiologic approach, Can. J. Psychiat., 2006, 51, 342–349 10.1177/070674370605100602Search in Google Scholar PubMed

[8] Potvin S., Stip E., Sepehry A.A., Gendron A., Bah R., Kouassi E., Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review, Biol. Psychiatry, 2008, 63, 801–808 http://dx.doi.org/10.1016/j.biopsych.2007.09.02410.1016/j.biopsych.2007.09.024Search in Google Scholar PubMed

[9] Shirts B.H., Wood J., Yolken R.H., Nimgaonkar V.L., Association study of IL10, IL1β, and IL1RN and schizophrenia using tag SNPs from a comprehensive database: suggestive association with rs16944 at IL1β, Schizophr. Res., 2006, 88, 235–244 http://dx.doi.org/10.1016/j.schres.2006.06.03710.1016/j.schres.2006.06.037Search in Google Scholar PubMed

[10] Clerici M., Arosio B., Mundo E., Cattaneo E., Pozzoli S., Dell’Osso B., et al., Cytokine polymorphisms in the pathophysiology of mood disorders, CNS Spectr., 2009, 14, 419–425 10.1017/S1092852900020393Search in Google Scholar

[11] Ryan M.M., Lockstone H.E., Huffaker S.J., Wayland M.T., Webster M.J., Bahn S., Gene expression analysis of bipolar disorder reveals down regulation of the ubiquitin cycle and alterations in synaptic genes, Mol. Psychiatry, 2006, 11, 965–978 http://dx.doi.org/10.1038/sj.mp.400187510.1038/sj.mp.4001875Search in Google Scholar PubMed

[12] Fan X., Goff D.C., Henderson D.C., Inflammation and schizophrenia, Exp. Rev. Neurother., 2007, 7, 789–796 http://dx.doi.org/10.1586/14737175.7.7.78910.1586/14737175.7.7.789Search in Google Scholar

[13] Goldstein B.I., Kemp D.E., Soczynska J.K., McIntyre R.S., Inflammation and the phenomenology, pathophysiology, co-morbidity, and treatment of bipolar disorder: a systematic review of the literature, J. Clin. Psychiatry, 2009, 70, 1078–1090 http://dx.doi.org/10.4088/JCP.08r0450510.4088/JCP.08r04505Search in Google Scholar

[14] Watanabe Y., Someya T., Nawa H., Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models, Psychiatry Clin.Neurosci., 2010, 64, 217–230 http://dx.doi.org/10.1111/j.1440-1819.2010.02094.x10.1111/j.1440-1819.2010.02094.xSearch in Google Scholar

[15] Shelton R.C., Claiborne J., Sidoryk-Wegrzynowicz M., Reddy R., Aschner M., Lewis D.A., et al., Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol. Psychiatry, (in press), Doi:10.1038/mp.2010.52 10.1038/mp.2010.52Search in Google Scholar

[16] Sprague A.H., Khalil R.A., Inflammatory cytokines in vascular dysfunction and vascular disease, Biochem. Pharmacol., 2009, 78, 539–552 http://dx.doi.org/10.1016/j.bcp.2009.04.02910.1016/j.bcp.2009.04.029Search in Google Scholar

[17] Wyss-Coray T., Mucke L., Inflammation in neurodegenerative disease-a double-edged sword, Neuron, 2002, 35, 419–432 http://dx.doi.org/10.1016/S0896-6273(02)00794-810.1016/S0896-6273(02)00794-8Search in Google Scholar

[18] Tansey M.G., Inflammation in neuropsychiatric disease, Neurobiol. Dis., 2010, 37, 491–492 http://dx.doi.org/10.1016/j.nbd.2009.12.00410.1016/j.nbd.2009.12.004Search in Google Scholar PubMed PubMed Central

[19] Kronfol Z., Remick D.G., Cytokines and the brain: implications for clinical psychiatry, Am. J. Psychiat., 2000, 157, 683–694 http://dx.doi.org/10.1176/appi.ajp.157.5.68310.1176/appi.ajp.157.5.683Search in Google Scholar PubMed

[20] Reichenberg A., Yirmiya R., Schuld A., Kraus T., Haack M., Morag A., et al., Cytokine-associated emotional and cognitive disturbances in humans, Arch. Gen. Psychiatry, 2001, 58, 445–452 http://dx.doi.org/10.1001/archpsyc.58.5.44510.1001/archpsyc.58.5.445Search in Google Scholar PubMed

[21] Wilson C.J., Finch C.E., Cohen H.J., Cytokines and cognition-the case for a head-to-toe inflammatory paradigm, J. Am. Geriatr. Soc., 2002, 50, 2041–2056 http://dx.doi.org/10.1046/j.1532-5415.2002.50619.x10.1046/j.1532-5415.2002.50619.xSearch in Google Scholar PubMed

[22] Myint A.M., Leonard B.E., Steinbusch H.W., Kim Y.K., Th1, Th2, and Th3 cytokine alterations in major depression, J. Affect.Disord., 2005, 88, 167–173 http://dx.doi.org/10.1016/j.jad.2005.07.00810.1016/j.jad.2005.07.008Search in Google Scholar PubMed

[23] Coelho F.M., Reis H.J., Nicolato R., Romano-Silva, M.A., Teixeira, M.M., Bauer M.E., et al., Increased serum levels of inflammatory markers in chronic institutionalized patients with schizophrenia, Neuroimmunomodulation, 2008, 15, 140–144 10.1159/000148197Search in Google Scholar PubMed

[24] Kim Y.K., Myint A.M., Verkerk R., Scharpe S., Steinbusch H., Leonard B., Cytokine changes and tryptophan metabolites in medication naive and medication free schizophrenic patients, Neuropsychobiology, 2009, 59, 123–129 http://dx.doi.org/10.1159/00021356510.1159/000213565Search in Google Scholar PubMed

[25] Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E. K., et al., A meta-analysis of cytokines in major depression, Biol. Psychiatry, 2010, 67, 446–457 http://dx.doi.org/10.1016/j.biopsych.2009.09.03310.1016/j.biopsych.2009.09.033Search in Google Scholar PubMed

[26] Dantzer R., Cytokine-induced sickness behaviour: A neuroimmune response to activation of innate immunity, Eur. J. Pharmacol. 2004, 500, 399–411 http://dx.doi.org/10.1016/j.ejphar.2004.07.04010.1016/j.ejphar.2004.07.040Search in Google Scholar PubMed

[27] Cunningham C., Campion S., Lunnon K., Murray C.L., Woods J.F.C., Deacon R.M.J., Systemic inflammation induces acute behavioural and cognitive changes and accelerates neurodegenerative disease, Biol. Psychiatry., 2009, 65, 304–312 http://dx.doi.org/10.1016/j.biopsych.2008.07.02410.1016/j.biopsych.2008.07.024Search in Google Scholar PubMed PubMed Central

[28] Levine J., Barak Y., Chengappa K.N., Rapoport A., Rebey M., Barak V., Cerebrospinal cytokine levels in patients with acute depression, Neuropsychobiology, 1999, 40, 71–76 http://dx.doi.org/10.1159/00002661510.1159/000026615Search in Google Scholar PubMed

[29] Garver D.L., Tamas R.L., Holcomb J.A., Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype, Neuropsychopharmacology, 2003, 28, 1515–1520 http://dx.doi.org/10.1038/sj.npp.130021710.1038/sj.npp.1300217Search in Google Scholar PubMed

[30] Soderlund J., Schroder J., Nordin C., Samuelsson M., Walther-Jallow L., Karlsson H., et al., Activation of brain interleukin-1b in schizophrenia, Mol. Psychiatry, 2009, 14, 1069–1071 http://dx.doi.org/10.1038/mp.2009.5210.1038/mp.2009.52Search in Google Scholar PubMed PubMed Central

[31] Perry V.H., The influence of systemic inflammation on inflammation in the brain:implications for chronic neurodegenerative disease, Brain Behav. Immun., 2004, 18, 407–413 http://dx.doi.org/10.1016/j.bbi.2004.01.00410.1016/j.bbi.2004.01.004Search in Google Scholar PubMed

[32] Opal S.M., DePalo V.A., Anti-inflammatory cytokines, Chest, 2000, 117, 1162–1172 http://dx.doi.org/10.1378/chest.117.4.116210.1378/chest.117.4.1162Search in Google Scholar PubMed

[33] Kim Y.K., Jung H.G., Myint A.M., Kim H., Park S.H., Imbalance between pro-inflammatory and anti-inflmmatory cytokines in bipolar disorder, J. Affect.Disord., 2007, 104, 91–95 http://dx.doi.org/10.1016/j.jad.2007.02.01810.1016/j.jad.2007.02.018Search in Google Scholar PubMed

[34] Song C., Halbreich U., Han C., Leonard B.E., Luo H., Imbalance between pro- and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electro acupuncture or fluoxetine treatment, Pharmacopsychiatry, 2009, 42, 182–188 http://dx.doi.org/10.1055/s-0029-120226310.1055/s-0029-1202263Search in Google Scholar PubMed

[35] Schnabel R.B., Lunetta K.L., Larson M.G., Dupuis J., Lipinska I., Rong J., et al., The relation of genetic and environmental factors to systemic inflammatory biomarkers concentrations, Circ. Cardiovasc. Genet., 2009, 2, 229–237 http://dx.doi.org/10.1161/CIRCGENETICS.108.80424510.1161/CIRCGENETICS.108.804245Search in Google Scholar PubMed PubMed Central

[36] Bennermo M., Held C., Stemme S., Ericsson C.G., Silveira A., Green F., et al., Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin. Chem., 2004, 50, 2136–2140 http://dx.doi.org/10.1373/clinchem.2004.03753110.1373/clinchem.2004.037531Search in Google Scholar PubMed

[37] Boin F., Zanardini R., Pioli R., Altamura C.A., Maes M., Gennarelli M., Association of -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia, Mol. Psychiatry, 2001, 6, 79–82 http://dx.doi.org/10.1038/sj.mp.400081510.1038/sj.mp.4000815Search in Google Scholar PubMed

[38] Akanji A.O., Ohaeri J.U., Al-Shammri S., Fatania H.R., Association of blood levels of C-reactive protein with clinical phenotypes in Arab schizophrenic patients, Psychiatry Res., 2009, 169, 56–61 http://dx.doi.org/10.1016/j.psychres.2008.06.01010.1016/j.psychres.2008.06.010Search in Google Scholar PubMed

[39] Dickerson F., Stallings C., Origoni A., Boronow J., Yolken R., Elevated serum levels of C-reactive protein are associated with mania symptoms in outpatients with bipolar disorder, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007a, 31, 952–955 http://dx.doi.org/10.1016/j.pnpbp.2007.02.01810.1016/j.pnpbp.2007.02.018Search in Google Scholar PubMed

[40] Howren M.B., Lamkin D.M., Suls J., Association of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis, Psychosom. Med., 2009, 71, 171–86 http://dx.doi.org/10.1097/PSY.0b013e3181907c1b10.1097/PSY.0b013e3181907c1bSearch in Google Scholar PubMed

[41] Yang Y., Wan C., Li H., Zhu H., La Y., Xi Z., et al., Altered levels of acute phase proteins in the plasma of patients with schizophrenia, Anal. Chem., 2006, 78, 3571–3576 http://dx.doi.org/10.1021/ac051916x10.1021/ac051916xSearch in Google Scholar PubMed

[42] Morera A.L., Henry M., Garcia-Hernandez A., Fernandez-Lopez L., Actute phase proteins as biological markers of negative psychopathology in paranoid schizophrenia, Actas Esp. Psiquiatr., 2007, 35, 249–252 Search in Google Scholar

[43] Chittiprol S., Venkatasubramanian G., Neelakantacharan N., Reddy N.A., Shetty K.T., Gangadhar B.N., Longitudinal study of beta-2-microglobulin abnormalities in schizophrenia, Int. Immunopharmacol., 2009, 9, 1215–1217 http://dx.doi.org/10.1016/j.intimp.2009.07.00210.1016/j.intimp.2009.07.002Search in Google Scholar

[44] Brietzke E., Kauer-Sant’Anna M., Teixeira A.L., Kapczinski F., Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder, Brain Behav. Immun., 2009, 23, 1079–1082 http://dx.doi.org/10.1016/j.bbi.2009.04.00810.1016/j.bbi.2009.04.008Search in Google Scholar

[45] Teixeria A.L., Resi H.J., Nicolato R., Brito-Melo G., Correa H., Teixeria M.M., et al., Increased serum levels of CCL11/eotaxin in schizophrenia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32, 710–714 http://dx.doi.org/10.1016/j.pnpbp.2007.11.01910.1016/j.pnpbp.2007.11.019Search in Google Scholar

[46] Simon N.M., McNamara K., Chow C.W., Maser R.S., Papakostas G.I., Pollack M.H., et al., A detailed examination of cytokine abnormalities in major depressive disorder, Eur. Neuropsychopharmacol., 2008, 18, 230–233 http://dx.doi.org/10.1016/j.euroneuro.2007.06.00410.1016/j.euroneuro.2007.06.004Search in Google Scholar

[47] Theodoropoulou S., Spanakos G., Baxevanis C.N., Economou M., Gritzapis A.D., Papamichail M.P., Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients, Schizophr. Res., 2001, 47, 13–25 http://dx.doi.org/10.1016/S0920-9964(00)00007-410.1016/S0920-9964(00)00007-4Search in Google Scholar

[48] O’Brien S.M., Scully P., Scott L.V., Dinan T.G., Cytokine profile in bipolar affective disorder: focus on acutely ill patients, J. Affect.Disord., 2006, 90, 263–267 http://dx.doi.org/10.1016/j.jad.2005.11.01510.1016/j.jad.2005.11.015Search in Google Scholar PubMed

[49] Yang K., Xie G., Zhang Z., Wang C., Li W., Zhou W., et al., Levels of serum interleukin (IL)-6, IL-1beta, tumor necrosis factor-alpha and leptin and their correlation in depression, Aust. N Z J. Psychiatry, 2007, 41, 266–273 http://dx.doi.org/10.1080/0004867060105775910.1080/00048670601057759Search in Google Scholar PubMed

[50] Kim Y.K., Myint A.M., Lee B.H., Han C.S., Lee H.J., Kim D.J., et al., Th1, Th2 and Th3 cytokine alteration in schizophrenia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004a, 28, 1129–1134 http://dx.doi.org/10.1016/j.pnpbp.2004.05.04710.1016/j.pnpbp.2004.05.047Search in Google Scholar PubMed

[51] Kim Y.K., Myint A.M., Lee B.H., Han C.S., Lee S.W., Leonard B.E., et al., T-helper types 1, 2, and 3 cytokine interactions in symptomatic manic patients, Psychiatry Res., 2004b, 129, 267–272 http://dx.doi.org/10.1016/j.psychres.2004.08.00510.1016/j.psychres.2004.08.005Search in Google Scholar PubMed

[52] Schmitt A., Bertsch T., Tost H., Bergmann A., Henning U., Klimke A., et al., Increased serum interleukin-1β and interleukin-6 in elderly, chronic schizophrenic patients on stable antipsychotic medication, Neuropsychiatr. Dis. Treat., 2005, 1, 171–177 http://dx.doi.org/10.2147/nedt.1.2.171.6104810.2147/nedt.1.2.171.61048Search in Google Scholar PubMed PubMed Central

[53] Ebrinc S., Top C., Oncul O., Basoglu C., Cavuslu S., Cetin M., Serum interleukin 1 alpha and interleukin 2 levels in patients with schizophrenia, J. Int. Med. Res., 2002, 30, 314–317 10.1177/147323000203000313Search in Google Scholar

[54] Ortiz-Dominguez A., Hernandez M.E., Berlanga C., Gutierrez-Mora D., Moreno J., Heinze G., et al., Immune variations in bipolar disorder: phasic differences, Bipolar Disord., 2007, 9, 596–602 http://dx.doi.org/10.1111/j.1399-5618.2007.00493.x10.1111/j.1399-5618.2007.00493.xSearch in Google Scholar

[55] Maes M., Chiavetto L.B., Bignotti S., Tura G.J.B., Pioli R., Boin F., et al., Increased serum interleukin-8 and interleukin-10 in schizophrenic patients resistant to treatment with neuroleptics and stimulatory effects of clozapine on serum leukemia inhibitory factor receptor, Schizophr. Res., 2002, 54, 281–291 http://dx.doi.org/10.1016/S0920-9964(00)00094-310.1016/S0920-9964(00)00094-3Search in Google Scholar

[56] Kim Y.K., Suh I.B., Kim H., Han C.S., Lim C.S., Choi S.H., et al., The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs, Mol. Psychiatry, 2002, 7, 1107–1114 http://dx.doi.org/10.1038/sj.mp.400108410.1038/sj.mp.4001084Search in Google Scholar

[57] Tanaka K.F., Shintani F., Fujii Y., Yagi G., Asai M., Serum interleukin-18 levels are elevated in schizophrenia, Psychiatry Res., 2000, 96, 75–80 http://dx.doi.org/10.1016/S0165-1781(00)00196-710.1016/S0165-1781(00)00196-7Search in Google Scholar

[58] Bresee C., Rapaport M.H., Persistently increased serum soluble interleukin-2 receptors in continuously ill patients with schizophrenia, Int. J. Neuropsychopharmacol., 2009, 12, 861–865 http://dx.doi.org/10.1017/S146114570900031510.1017/S1461145709000315Search in Google Scholar

[59] Maes M., Meltzer H.Y., Bosmans E., Bergmans R., Vandoolaeghe E., Ranjan R., et al., Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin -2 and transferrin in major depression, J. Affect. Disord., 1995a, 34, 301–309 http://dx.doi.org/10.1016/0165-0327(95)00028-L10.1016/0165-0327(95)00028-LSearch in Google Scholar

[60] Hope S., Melle I., Aukrust P, Steen N.E., Birkenaes A.B., Lorentzen S., et al., Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor, Bipolar Disord., 2009, 11, 726–734 http://dx.doi.org/10.1111/j.1399-5618.2009.00757.x10.1111/j.1399-5618.2009.00757.xSearch in Google Scholar PubMed

[61] Vaccarino V., Brennan M.L., Miller A.H., Bremner J.D., Ritchie J.C., Lindau F., et al., Association of major depressive disorder with serum myeloperoxidase and other markers of inflammation: a twin study, Biol. Psychiatry, 2008, 64, 476–483 http://dx.doi.org/10.1016/j.biopsych.2008.04.02310.1016/j.biopsych.2008.04.023Search in Google Scholar PubMed PubMed Central

[62] Papiol S., Rosa A., Gutierrez B., Martin B., Salgado P., Catalan R., et al., Interleukin-1 cluster is associated with genetic risk for schizophrenia and bipolar disorder, J. Med. Genet., 2004, 41, 219–223 http://dx.doi.org/10.1136/jmg.2003.01291410.1136/jmg.2003.012914Search in Google Scholar PubMed PubMed Central

[63] Hanninen K., Katila H., Saarela M., Rontu R., Mattila K.M., Fan M., et al., Interleukin-1 beta gene polymorphism and its interactions with neuregulin-1 gene polymorphism are associated with schizophrenia, Eur. Arch. Psychiatry Clin.Neurosci., 2008, 258, 10–15 http://dx.doi.org/10.1007/s00406-007-0756-910.1007/s00406-007-0756-9Search in Google Scholar PubMed

[64] Schwarz M.J., Kronig H., Riedel M., Dehning S., Douhet A., Spellman I., et al., IL-2 and IL-4 polymorphisms as candidate genes in schizophrenia, Eur. Arch. Psychiatry Clin.Neurosci., 2006, 256, 72–76 http://dx.doi.org/10.1007/s00406-005-0603-910.1007/s00406-005-0603-9Search in Google Scholar PubMed

[65] Chen X., Kendler K.S., Interleukin 3 and Schizophrenia, Am. J. Psychiat., 2008, 165, 13–14 http://dx.doi.org/10.1176/appi.ajp.2007.0712186810.1176/appi.ajp.2007.07121868Search in Google Scholar PubMed

[66] Sun S., Wei J., Li H., Jin S., Li P., Ju G., et al., A family based study of IL3RA gene on susceptibility to schizophrenia in a Chinese Han population, Brain Res., 2009, 1268, 13–16 http://dx.doi.org/10.1016/j.brainres.2009.02.07110.1016/j.brainres.2009.02.071Search in Google Scholar PubMed

[67] Paul-Samojedny M., Kowalczyk M., Suchanek R., Owczarek A., Fila-Danilow A., Szczygiel A., et al., Functional polymorphism in the interleukin -6 and interleukin -10 genes in patients with paranoid schizophrenia — a case control study, J. Mol. Neurosci., 2010, 42, 112–119 http://dx.doi.org/10.1007/s12031-010-9365-610.1007/s12031-010-9365-6Search in Google Scholar PubMed

[68] Sun S., Wang F., Wei J., Cao L.Y., Qi L.Y., Xiu M.H., et al., Association between interleukin-6 receptor polymorphism and patients with schizophrenia, Schizophr. Res., 2008, 102, 346–347 http://dx.doi.org/10.1016/j.schres.2008.04.01810.1016/j.schres.2008.04.018Search in Google Scholar PubMed

[69] Shirts B.H., Wood J., Yolken R.H., Nimgaonkar V.L., Comprehensive evaluation of positional candidates in the IL-18 pathway reveals suggestive associations with schizophrenia and herpes virus seropositivity, Am. J. Med. Genet. Part B (Neuropsychiatric Genetics), 2008, 147B, 343–350 http://dx.doi.org/10.1002/ajmg.b.3060310.1002/ajmg.b.30603Search in Google Scholar PubMed

[70] Galecki P., Florkowski A., Bobinska K., Smigielski J., Bienkiewicz M., Szemraj J., Functional polymorphism of the myeloperoxidase gene (G-463A) in depressive patients, Acta Neuropsychiatrica., 2010, 22, 218–222 http://dx.doi.org/10.1111/j.1601-5215.2010.00483.x10.1111/j.1601-5215.2010.00483.xSearch in Google Scholar PubMed

[71] Lee H.Y., Kim Y.K., Effect of TGF-β1 polymorphism on the susceptibility and treatment response of atypical antipsychotic agent, Acta Neuropsychiatrica, 2010a, 22, 174–179 http://dx.doi.org/10.1111/j.1601-5215.2009.00435.x10.1111/j.1601-5215.2009.00435.xSearch in Google Scholar PubMed

[72] Czerski P. M., Rybakowski F., Kapelski P., Rybakowski J.K., Dmitrzak-Weglarz M., Leszczynska-Rodziewicz A., et al., Association of tumor necrosis factor-308G/A promoter polymorphism with schizophrenia and bipolar affective disorder in a Polish population, Neuropsychobiology, 2008, 57, 88–94 http://dx.doi.org/10.1159/00013564210.1159/000135642Search in Google Scholar PubMed

[73] Cerri A.P., Arosio B., Viazzoli C., Confalonieri R., Vergani C., Annoni G., The-308 (G/A) single nucleotide polymorphism in the TNF-α gene and risk of major depression in the elderly, Int. J. Geriatr. Psychiatry, 2010, 25, 219–223 http://dx.doi.org/10.1002/gps.232310.1002/gps.2323Search in Google Scholar PubMed

[74] Dickerson F., Boronow J., Stallings C., Origoni A., Yolken R., The lymphotoxin Cys13Arg polymorphism and cognitive functioning in individuals with schizophrenia, Schizophr. Res., 2007b, 89, 173–176 http://dx.doi.org/10.1016/j.schres.2006.08.01510.1016/j.schres.2006.08.015Search in Google Scholar PubMed

[75] Paul-Samojedny M., Owczarek A., Suchanek R., Kowalczyk M., Fila-Danilow A., Borkowska P., et al., Association study of interferon gamma (IFN-γ) +874T/A gene polymorphism in patients with paranoid schizophrenia, J. Mol. Neurosci., 2011, 43, 309–315 http://dx.doi.org/10.1007/s12031-010-9442-x10.1007/s12031-010-9442-xSearch in Google Scholar PubMed

[76] Chen, P., Huang, K., Zhou, G., Zeng, Z., Wang, T., Li, B. et al., Common SNPs in CSF2RB are associated with major depression and schizophrenia in the Chinese Han population, World J. Biol. Psychiatry, 2011, 12, 233–238 http://dx.doi.org/10.3109/15622975.2010.54432810.3109/15622975.2010.544328Search in Google Scholar PubMed

[77] Altamura A.C., Mundo E., Cattaneo E., Pozzoli S., Dell’osso B., Gennarelli M., et al., MCP-1 gene (SCYA2) and mood disorders: preliminary results of a case-control association study, Neuroimmunomodulation, 2010, 17, 126–131 http://dx.doi.org/10.1159/00025869610.1159/000258696Search in Google Scholar PubMed

[78] Ohi K., Hashimoto R., Yasuda Y., Yoshida T., Takahashi H., Iike N., et al., The chitinase 3 like gene and schizophrenia: evidence from a multicentre case-control study and meta-analysis, Schizophr. Res., 2010, 116, 126–132 http://dx.doi.org/10.1016/j.schres.2009.12.00210.1016/j.schres.2009.12.002Search in Google Scholar PubMed

[79] Okahisa Y., Ujike H., Kunugi H., Ishihara T., Kodama M., Takaki M., et al., Leukemia inhibitory factor gene is associated with schizophrenia and working memory function, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34, 172–176 http://dx.doi.org/10.1016/j.pnpbp.2009.10.02010.1016/j.pnpbp.2009.10.020Search in Google Scholar PubMed

[80] Rasmussen H.B., Timm S., Wang A.G., Soeby K., Lublin H., Fenger M., et al., Association between the CCR5 32-bp deletion allele and late onset of schizophrenia, Am. J. Psychiat., 2006, 163, 507–511 http://dx.doi.org/10.1176/appi.ajp.163.3.50710.1176/appi.ajp.163.3.507Search in Google Scholar PubMed

[81] Wan C., La Y., Zhu H., Yang Y., Jiang L., Chen Y., et al., Abnormal changes of plasma acute phase proteins in schizophrenia and the relation between schizophrenia and haptoglobin (Hp) gene, Amino Acids, 2007, 32, 101–108 http://dx.doi.org/10.1007/s00726-005-0292-810.1007/s00726-005-0292-8Search in Google Scholar PubMed

[82] Liu L., Jia F., Yuan G., Chen Z., Yao J., Li H., et al., Tyrosine hydroxylase, interleukin-1 beta and tumor necrosis factor-alpha are over expressed in peripheral blood mononuclear cells from schizophrenia patients as determined by semi-quantitative analysis, Psychiatry Res., 2010, 176, 1–7 http://dx.doi.org/10.1016/j.psychres.2008.10.02410.1016/j.psychres.2008.10.024Search in Google Scholar PubMed

[83] Padmos R.C., Hillegers M.H., Knijff E.M., Vonk R., Bouvy A., Staal F.J., et al., A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes, Arch. Gen. Psychiatry, 2008, 65, 395–407 http://dx.doi.org/10.1001/archpsyc.65.4.39510.1001/archpsyc.65.4.395Search in Google Scholar

[84] Drexhage R.C., van der Heul-Nieuwenhuijsen L., Padmos R.C., van Beveren N., Cohen D., Versnel M.A., et al., Inflammatory gene expression in monocytes of patients with schizophrenia: overlap and difference with bipolar disorder. A study in naturalistically treated patients, Int. J. Neuropsychopharmacol., 2010, 15, 1–13 10.1017/S1461145710000799Search in Google Scholar

[85] Konsman J. P., Parnet P., Dantzer R., Cytokine-induced sickness behaviour: mechanisms and implications, Trends Neurosci., 2002, 25, 154–159 http://dx.doi.org/10.1016/S0166-2236(00)02088-910.1016/S0166-2236(00)02088-9Search in Google Scholar

[86] Vitkovic L., Bockaert J., Jacque C., ’Inflammatory’ cytokines: neuromodulators in normal brain? J. Neurochem., 2000, 74, 457–471 http://dx.doi.org/10.1046/j.1471-4159.2000.740457.x10.1046/j.1471-4159.2000.740457.xSearch in Google Scholar PubMed

[87] Licinio J., Wong M.L., Pathways and mechanisms for cytokine signalling of the central nervous system, J. Clin.Investigat., 1997, 100, 2941–2947 http://dx.doi.org/10.1172/JCI11984610.1172/JCI119846Search in Google Scholar PubMed PubMed Central

[88] Banks W. A., The blood-brain barrier in psychoneuroimmunology, Neurol. Clin., 2006, 24, 413–419 http://dx.doi.org/10.1016/j.ncl.2006.03.00910.1016/j.ncl.2006.03.009Search in Google Scholar PubMed

[89] Goehler L.E., Gaykema R.P.A., Nguyen K.T., Lee J.E., Tiiders F.J.H., Maier S.F., et al., Interleukin-1b in immune cells of the abdominal vagus nerve: a link between the immune and nervous system, J. Neurosci., 1999, 19, 2799–2806 10.1523/JNEUROSCI.19-07-02799.1999Search in Google Scholar

[90] Khairova R., Machado-Viera R., Du J., Manji H.K., A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder, Int. J. Neuropsychopharmacol., 2009, 12, 561–578 http://dx.doi.org/10.1017/S146114570900992410.1017/S1461145709009924Search in Google Scholar PubMed PubMed Central

[91] Abbott N.J., Ronnback L., Hansson. E., Astrocyte endothelial interactions at the blood-brain barrier, Nat. Rev. Neurosci., 2006, 7, 41–53 http://dx.doi.org/10.1038/nrn182410.1038/nrn1824Search in Google Scholar PubMed

[92] Stolp H.B., Johansson P.A., Habgood M.D., Dziegielewska K.M., Saunders N.R., Ek C.J., Effects of neonatal systemic inflammation on blood brain barrier permeability and behaviour in juvenile and adult rats, Cardiovasc. Psychiatry Neurol., 2011, Article ID 469046, 10 pages, Doi:10.1155/2011/469046 10.1155/2011/469046Search in Google Scholar PubMed PubMed Central

[93] Muller N., Ackenheil M., Immunoglobulin and albumin content of cerebrospinal fluid in schizophrenic patients: relationship to negative symptomatology, Schizophr. Res., 1995, 14, 223–228 http://dx.doi.org/10.1016/0920-9964(94)00045-A10.1016/0920-9964(94)00045-ASearch in Google Scholar

[94] Schwarz M.J., Ackenheil M., Riedel M., Muller N., Blood-cerebrospinal fluid barrier impairment as indicator for an immune process in schizophrenia, Neurosci. Lett., 1998, 253, 201–203 http://dx.doi.org/10.1016/S0304-3940(98)00655-710.1016/S0304-3940(98)00655-7Search in Google Scholar

[95] Thomas A.J., O’Brien J.T., Davis S., Ballard C., Barber R., Kalaria R.N., et al., Ischemic basis for deep white matter hyperintensities in major depression, Arch. Gen. Psychiatry, 2002, 59, 785–792 http://dx.doi.org/10.1001/archpsyc.59.9.78510.1001/archpsyc.59.9.785Search in Google Scholar

[96] Harris L.W., Wayland M., Lan M., Ryan M., Giger T., Lockstone H., et al., The cerebral microvasculature in schizophrenia: a Laser capture microdissection study, PLoS ONE, 2008, 3, e3964 http://dx.doi.org/10.1371/journal.pone.000396410.1371/journal.pone.0003964Search in Google Scholar

[97] Hanson D.R., Gottesman I.I., Theories of schizophrenia: a genetic-inflammatory-vascular synthesis, BMC Med. Genet., 2005, 6, 7 http://dx.doi.org/10.1186/1471-2350-6-710.1186/1471-2350-6-7Search in Google Scholar

[98] Fleminger S., Long-term psychiatric disorders after traumatic brain injury, Eur. J. Anaesthesiol., 2008, 25(suppl 42), 123–130 http://dx.doi.org/10.1017/S026502150700325010.1017/S0265021507003250Search in Google Scholar

[99] Guerreiro D.F., Navarro R., Silva M., Carvalho M., Gois C., Psychosis secondary to traumatic brain injury, Brain Injury, 2009, 23, 358–361 http://dx.doi.org/10.1080/0269905090280091810.1080/02699050902800918Search in Google Scholar

[100] Shalev H., Serlin Y., Friedman A., Breaching the blood-brain barrier as a gate to psychiatric disorder, Cardiovasc. Psychiatry Neurol., 2009, Article ID 278531, 7 pages, Doi:10.1155/2009/278531 10.1155/2009/278531Search in Google Scholar

[101] Carson M.J., Doose J.M., Melchior B., Schmid C.D., Ploix C.C., CNS immune privilege: hiding in plain sight, Immunol. Rev., 2006, 213, 48–65 http://dx.doi.org/10.1111/j.1600-065X.2006.00441.x10.1111/j.1600-065X.2006.00441.xSearch in Google Scholar

[102] Conti B., Tabarean I., Sanchez-Alavez M., Davis C., Brownell S., Behrens M., et al., Cytokine receptors in the brain, Neuroimmune Biology, 2008, 6, 21–38 http://dx.doi.org/10.1016/S1567-7443(07)10002-810.1016/S1567-7443(07)10002-8Search in Google Scholar

[103] Camacho-Arroyo I., Lopez-Griego L., Morales-Montor J., The role of cytokines in the regulation of neurotransmission, Neuroimmunomodulation, 2009, 16, 1–12 http://dx.doi.org/10.1159/00017966110.1159/000179661Search in Google Scholar

[104] Bauer S., Kerr B.J., Patterson P.H., The neuropoietic cytokine family in development, plasticity, disease and injury, Nat. Rev. Neurosci., 2007, 8, 221–232 http://dx.doi.org/10.1038/nrn205410.1038/nrn2054Search in Google Scholar

[105] Freidin M., Bennett M.V.L., Kessler J.A., Cultured sympathetic neurons synthesize and release the cytokine interleukin-1β, Proc. Natl. Acad. Sci. USA, 1992, 89, 10440–10443 http://dx.doi.org/10.1073/pnas.89.21.1044010.1073/pnas.89.21.10440Search in Google Scholar

[106] Licinio L., Kling M., Hauser P., Cytokines and brain function: relevance of interferon α-induced mood and cognitive changes, Semin. Oncol., 1998, 25, 30–38 Search in Google Scholar

[107] Grilli M., Memo M., Nuclear factor kappa B/Rel proteins: a point of convergence of signaling pathways relevant to neural function and dysfunction, Biochem. Pharmacol., 1999, 57, 1–7 http://dx.doi.org/10.1016/S0006-2952(98)00214-710.1016/S0006-2952(98)00214-7Search in Google Scholar

[108] Du J., Creson T.K., Wu L-J., Ren M., Gray N.A., Falke C., et al., The role of hippocampal GluR1 and GLUR2 receptors in manic-like behavior, J. Neurosci., 2008, 28, 68–79 http://dx.doi.org/10.1523/JNEUROSCI.3080-07.200810.1523/JNEUROSCI.3080-07.2008Search in Google Scholar PubMed PubMed Central

[109] Chavarria A., Alcocer-Varela J., Is damage in central nervous system due to inflammation? Autoimmun. Rev., 2004, 3, 251–260 http://dx.doi.org/10.1016/j.autrev.2003.09.00610.1016/j.autrev.2003.09.006Search in Google Scholar PubMed

[110] Vezzani A., Ravizza T., Balosso S., Aronica E., Glia as a source of cytokines: implications for neuronal excitability and survival, Epilepsia, 2008, 49, 24–32 http://dx.doi.org/10.1111/j.1528-1167.2008.01490.x10.1111/j.1528-1167.2008.01490.xSearch in Google Scholar PubMed

[111] McAllister C.G., van Kammen D.P., Rehn T.J., Miller A.L., Gurklis J., Helley M.E., et al., Increases in CSF levels of interleukin-2 in schizophrenia:effects of recurrence of psychosis and medication status, Am. J. Psychiat., 1995, 152, 1291–1297 10.1176/ajp.152.9.1291Search in Google Scholar PubMed

[112] Mittleman B.B., Castellanos F.X., Jacobsen L.K., Rapoport J.L., Swedo S.E., Shearer G.M., Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease, J. Immunol., 1997, 159, 2994–2999 Search in Google Scholar

[113] Soderlund J., Olsson S.K., Samuelsson M., Walther-Jallow L., Johansson C., Erhardt S., et al., Elevation of cerebrospinal fluid interleukin -1β in bipolar disorder, J. Psychiatry Neurosci., 2011, 36, 114–118 10.1503/jpn.100080Search in Google Scholar PubMed PubMed Central

[114] Rao J.S., Harry G.J., Rapoport S.I., Kim H.W., Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients, Mol. Psychiatry, 2010, 15, 384–392 http://dx.doi.org/10.1038/mp.2009.4710.1038/mp.2009.47Search in Google Scholar PubMed PubMed Central

[115] Saetre P., Emilson L., Axelsson E., Kreuger J., Lindholm E., Jazin E., Inflammation-related genes up-regulated in schizophrenia, BMC Psychiatry, 7, 46 10.1186/1471-244X-7-46Search in Google Scholar

[116] Schmitt A., Leonardi-Essmann F., Durrenberger P.F., Parlapani E., Schneider-Axmann T., Spanagel R. et al., Regulation of immunemodulatory genes in left superior temporal cortex of schizophrenia patients, World J. Biol. Psychiatry, (in press), Doi:10.3109/15622975. 2010.530690 Search in Google Scholar

[117] Doorduin J., de Vries E.F.J., Willemsen A.T.M., de Groot J.C., Dierckx R.A., Klein H.C., Neuroinflammation in schizophrenia-related psychosis: A PET Study, J. Nucl. Med., 2009, 50, 1801–1807 http://dx.doi.org/10.2967/jnumed.109.06664710.2967/jnumed.109.066647Search in Google Scholar

[118] Kendler K.S., Thornton L.M., Gardner C.O., Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “Kindling” hypothesis, Am. J. Psychiat., 2000, 157, 1243–1251 http://dx.doi.org/10.1176/appi.ajp.157.8.124310.1176/appi.ajp.157.8.1243Search in Google Scholar

[119] Goebel M.U., Mills P.J., Irwin M.R., Ziegler M.G., Interleukin-6 and tumor necrosis factor-α production after acute psychological stress, exercise, and infused isoproterenol: differential effects and pathways, Psychosom. Med., 2000, 62, 591–598 10.1097/00006842-200007000-00019Search in Google Scholar

[120] Madrigal J.L., Hurtado O., Moro M.A., Lizasoain I., Lorenzo P., Castrillo A., et al., The increase in TNF-alpha levels is implicated in NF-kappaB activation and inducible nitric oxide synthase expression in brain cortex after immobilization stress, Neuropsychopharmacol., 2002, 26, 155–163 http://dx.doi.org/10.1016/S0893-133X(01)00292-510.1016/S0893-133X(01)00292-5Search in Google Scholar

[121] O’Connor K.A., Johnson J.D., Hansen M.K., Wieseler Frank J.L., Maksimova E., Watkins L.R., et al., Peripheral and central proinflammatory cytokine response to a severe acute stressor, Brain Res., 2003, 991, 123–132 http://dx.doi.org/10.1016/j.brainres.2003.08.00610.1016/j.brainres.2003.08.006Search in Google Scholar PubMed

[122] Pace T.W., Mletzko T.C., Alagbe O., Musselman D.L., Nemeroff C.B., Miller A.H., et al., Increased stress induced inflammatory responses in male patients with major depression and increased early life stress, Am. J. Psychiat., 2006, 163, 1630–1633 http://dx.doi.org/10.1176/appi.ajp.163.9.163010.1176/ajp.2006.163.9.1630Search in Google Scholar PubMed

[123] Hardingham G.E., Fukunaga Y., Bading H., Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways, Nat. Neurosci., 2002, 5, 405–414 10.1038/nn835Search in Google Scholar PubMed

[124] Kendler K.S., Karkowski L.M., Prescott C.A., Causal relationship between stressful life events and the onset of major depression, Am. J. Psychiat., 1999, 156, 837–841 10.1176/ajp.156.6.837Search in Google Scholar PubMed

[125] Joels M., Karst H., Alfarez D., Heine V.M., Qin Y., van Riel E., et al., Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus, Stress, 2004, 7, 221–231 http://dx.doi.org/10.1080/1025389050007000510.1080/10253890500070005Search in Google Scholar PubMed

[126] Akhtar R.S., Ness J.M., Roth K.A., Bcl-2 family regulation of neuronal development and neurodegeneration, Biochimica et Biophysica Acta, 2004, 1644, 189–203 http://dx.doi.org/10.1016/j.bbamcr.2003.10.01310.1016/j.bbamcr.2003.10.013Search in Google Scholar

[127] Shi Y., Mechanisms of caspase activation and inhibition during apoptosis, Mol. Cell, 2002, 9, 459–470 http://dx.doi.org/10.1016/S1097-2765(02)00482-310.1016/S1097-2765(02)00482-3Search in Google Scholar

[128] Yeretssian G., Labbe K., Saleh M., Molecular regulation of inflammation and cell death, Cytokines, 2008, 43, 380–390 http://dx.doi.org/10.1016/j.cyto.2008.07.01510.1016/j.cyto.2008.07.015Search in Google Scholar

[129] Li P., Nijhawan D., Budihardjo I., Srinivassula S.M., Alnemri E.S., Wang X., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptic protease cascade, Cell, 1997, 91, 479–489 http://dx.doi.org/10.1016/S0092-8674(00)80434-110.1016/S0092-8674(00)80434-1Search in Google Scholar

[130] Hengartner M.O., The Biochemistry of Apoptosis, Nature, 2000, 407, 770–776 http://dx.doi.org/10.1038/3503771010.1038/35037710Search in Google Scholar PubMed

[131] Earnshaw W.C., Martins L.M., Kaufmann S.H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis, Annu. Rev. Biochem., 1999, 68, 383–424 http://dx.doi.org/10.1146/annurev.biochem.68.1.38310.1146/annurev.biochem.68.1.383Search in Google Scholar PubMed

[132] Mogi M., Togari A., Kondo T., Mizuno Y., Komure O., Kuno S., et al., Caspase activities and tumor necrosis factor receptor R1 level are elevated in the substantia nigra from parkinsonian brain, J. Neural Transm., 2000, 107, 335–341 http://dx.doi.org/10.1007/s00702005002810.1007/s007020050028Search in Google Scholar PubMed

[133] Takeuchi H., Jin S., Wang J., Zhang G., Kawanokuchi J., Kuno R., et al., Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner, J. Biol. Chem., 2006, 281, 21362–21368 http://dx.doi.org/10.1074/jbc.M60050420010.1074/jbc.M600504200Search in Google Scholar PubMed

[134] Chen D.F., Schneider G.E., Martinou J.C., Tonegawa S., Bcl-2 promotes regeneration of several axons in mammalian CNS, Nature, 1997, 385, 434–439 http://dx.doi.org/10.1038/385434a010.1038/385434a0Search in Google Scholar PubMed

[135] Salvadore G., Nugent A.C., Chen G., Akula N., Yuan P., Cannon D.M., et al., Bcl-2 polymorphism influences gray matter volume in the ventral striatum in healthy humans, Biol. Psychiatry, 2009, 66, 804–807. Erratum in: Biol. Psychiatry, 2009, 66, 808 http://dx.doi.org/10.1016/j.biopsych.2009.05.02510.1016/j.biopsych.2009.05.025Search in Google Scholar PubMed PubMed Central

[136] Manji H.K., Moore G.J., Chen G. Lithium up-regulates the cytoprotective protein bcl-2 in vitro and in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness, J. Clin. Psychiatry, 2000, 61(suppl 9), 82–96 Search in Google Scholar

[137] Kosten T.A., Galloway M.P., Duman R.S., Russell D.S., D’sa C., Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures, Neuropsychopharmacol., 2008, 33, 1545–1558 http://dx.doi.org/10.1038/sj.npp.130152710.1038/sj.npp.1301527Search in Google Scholar

[138] Takayama S., Sato T., Krajewski S., Kochel K., Irie S., Millan J.A., et al., Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity, Cell 1995, 80, 279–284 http://dx.doi.org/10.1016/0092-8674(95)90410-710.1016/0092-8674(95)90410-7Search in Google Scholar

[139] Silva R., Mesquita A.R., Bessa J., Sousa J.C., Sotiropoulos I., Leao P., et al. Lithium blocks stress induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthasekinase-3 beta, Neuroscience, 2008, 152, 656–669 http://dx.doi.org/10.1016/j.neuroscience.2007.12.02610.1016/j.neuroscience.2007.12.026Search in Google Scholar

[140] Maes M., Evidence for an immune response in major depression: a review and hypothesis, Prog. Neuropsychopharmacol. Biol. Psychiatry, 1995b, 19, 11–38 http://dx.doi.org/10.1016/0278-5846(94)00101-M10.1016/0278-5846(94)00101-MSearch in Google Scholar

[141] Czeh B., Lucassen P.J., What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur. Arch. Psychiatry Clin. Neurosci., 2007, 257, 250–260 http://dx.doi.org/10.1007/s00406-007-0728-010.1007/s00406-007-0728-0Search in Google Scholar

[142] Hornsby, C.D., Grootendorst, J., de Kloet, E.R., Dexamethasone does not prevent seven-day ADX-induced apoptosis in the dentate gyrus of the rat hippocampus, Stress, 1996, 1, 51–64 http://dx.doi.org/10.3109/1025389960900109510.3109/10253899609001095Search in Google Scholar

[143] Pariante C.M., Lightman S.L., The HPA axis in major depression: classical theories and new developments, Trends Neurosci., 2008, 31, 464–468 http://dx.doi.org/10.1016/j.tins.2008.06.00610.1016/j.tins.2008.06.006Search in Google Scholar

[144] Besedovsky H.O., Del Rey A., Klusman I., Furukawa H., Arditi G.M., Kabiersch A., Cytokines as modulators of the hypothalamus-pituitary-adrenal axis, J. Steroid Biochem. Mol. Biol., 1991, 40, 613–618 http://dx.doi.org/10.1016/0960-0760(91)90284-C10.1016/0960-0760(91)90284-CSearch in Google Scholar

[145] Pariante C.M., Miller A.M., Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment, Biol. Psychiatry, 2001, 49, 391–404 http://dx.doi.org/10.1016/S0006-3223(00)01088-X10.1016/S0006-3223(00)01088-XSearch in Google Scholar

[146] Pace T.W., Hu F., Miller A.H., Cytokine-effects on glucocorticoid receptor function: relevance to glucocortoid resistance and the pathophysiology and treatment of major depression, Brain Behav. Immun., 2007, 21, 9–19 http://dx.doi.org/10.1016/j.bbi.2006.08.00910.1016/j.bbi.2006.08.009Search in Google Scholar PubMed PubMed Central

[147] Nemeroff C.B., Vale W.W., The neurobiology of depression: inroads to treatment and new drug discovery, J. Clin. Psychiatry, 2005, 66, 5–13 http://dx.doi.org/10.4088/JCP.v66n010110.4088/JCP.v66n0101Search in Google Scholar PubMed

[148] Raison C.L., Capuron L., Miller A.H., Cytokines sing the blues: inflammation and the pathogenesis of depression, Trends Immunol., 2006, 27, 24–31 http://dx.doi.org/10.1016/j.it.2005.11.00610.1016/j.it.2005.11.006Search in Google Scholar PubMed PubMed Central

[149] Irwin M. R., Miller A. H., Depressive disorders and immunity: 20 years of progress and discovery, Brain Behav. Immun., 2007, 21, 374–383 http://dx.doi.org/10.1016/j.bbi.2007.01.01010.1016/j.bbi.2007.01.010Search in Google Scholar PubMed

[150] Vedder H., Schreiber W., Schuld A., Kainz M., Lauer C.J., Krieg J.C., et al., Immune-endocrine host response to endotoxin in major depression, J. Psychiat. Res., 2007, 41, 280–289 http://dx.doi.org/10.1016/j.jpsychires.2006.07.01410.1016/j.jpsychires.2006.07.014Search in Google Scholar PubMed

[151] Angelucci F., Brene S., Mathe A.A., BDNF in schizophrenia, depression and corresponding animal models, Mol. Psychiatry, 2005, 10, 345–352 http://dx.doi.org/10.1038/sj.mp.400163710.1038/sj.mp.4001637Search in Google Scholar PubMed

[152] Verhagen M., van der Meij A., van Deurzen P.A., Janzing J.G., Arias-Vasquez A., Buitelaar J.K., et al., Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity, Mol. Psychiatry, 2010, 15, 260–271 http://dx.doi.org/10.1038/mp.2008.10910.1038/mp.2008.109Search in Google Scholar PubMed

[153] Neves-Pereira M., Cheung J.K., Pasdar A., Zhang F., Breen G., Yates P., et al., BDNF gene is a risk factor for schizophrenia in a Scottish population, Mol. Psychiatry, 2005, 10, 208–212 http://dx.doi.org/10.1038/sj.mp.400157510.1038/sj.mp.4001575Search in Google Scholar PubMed

[154] Frodl T., Schule C., Schmitt G., Born C., Baghai T., Zill P., et al., Association of the brain-derived neurotrophic factor val66met polymorphism with reduced hippocampal volumes in major depression, Arch. Gen. Psychiatry, 2007, 64, 410–416 http://dx.doi.org/10.1001/archpsyc.64.4.41010.1001/archpsyc.64.4.410Search in Google Scholar PubMed

[155] Duman R.S., Monteggia L.M., A neurotrophic model for stress-related mood disorders, Biol. Psychiatry, 2006, 59, 1116–1127 http://dx.doi.org/10.1016/j.biopsych.2006.02.01310.1016/j.biopsych.2006.02.013Search in Google Scholar PubMed

[156] Lee B.H., Kim Y.K., The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment, Psychiatry Investig., 2010b, 7, 231–235 http://dx.doi.org/10.4306/pi.2010.7.4.23110.4306/pi.2010.7.4.231Search in Google Scholar PubMed PubMed Central

[157] Martinowich K., Manji H., Lu B., New insights into BDNF function in depression and anxiety, Nat Neurosci., 2007, 10, 1089–1093 http://dx.doi.org/10.1038/nn197110.1038/nn1971Search in Google Scholar PubMed

[158] Jiang Y., Wei N., Zhu J., Lu T., Chen Z., Xu G., et al., Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat, Mediators Inflamm., 2010, Article ID 372423, 10 pages, Doi:10.1155/2010/372423 10.1155/2010/372423Search in Google Scholar PubMed PubMed Central

[159] Cortese G.P., Barrientos R.M., Maier S.F., Patterson S.L., Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCγ1, and ERK in hippocampal synaptoneurosomes, J. Neurosci., 2011, 31, 4274–4279 http://dx.doi.org/10.1523/JNEUROSCI.5818-10.201110.1523/JNEUROSCI.5818-10.2011Search in Google Scholar PubMed PubMed Central

[160] Kauer-Sant’Anna M., Kapczinski F., Andreazza A.C., Bond D.J., Lam R.W., Young L.T., et al. Brain-derived neurotrophic factor and inflammatory markers in patients with early-vs. late-stage bipolar disorder, Int. J. Neuropsychopharmacol., 2009, 12, 447–458 http://dx.doi.org/10.1017/S146114570800931010.1017/S1461145708009310Search in Google Scholar PubMed

[161] Castner S.A., Goldman-Rakic P.S., Williams G.V., Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia, Psychopharmacology (Berl)., 2004, 174, 111–125 http://dx.doi.org/10.1007/s00213-003-1710-910.1007/s00213-003-1710-9Search in Google Scholar PubMed

[162] Sanacora G., Zarate C.A., Krystal J.H., Manji H.K., Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders, Nat. Rev. Drug Discov., 2008, 7, 426–437 http://dx.doi.org/10.1038/nrd246210.1038/nrd2462Search in Google Scholar PubMed PubMed Central

[163] Sodhi M., Wood K.H., Meador-Woodruff J., Role of glutamate in schizophrenia: integrating excitatory avenues of research, Exp. Rev. Neurother., 2008, 8, 1389–1406 http://dx.doi.org/10.1586/14737175.8.9.138910.1586/14737175.8.9.1389Search in Google Scholar PubMed

[164] Goff D.C., Coyle J.T., The emerging role of glutamate in the pathophysiology and treatment of schizophrenia, Am. J. Psychiat., 2001, 158, 1367–1377 http://dx.doi.org/10.1176/appi.ajp.158.9.136710.1176/appi.ajp.158.9.1367Search in Google Scholar PubMed

[165] Muller N., Schwarz M., Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission, Neurotox. Res., 2006, 10, 131–148 http://dx.doi.org/10.1007/BF0303324210.1007/BF03033242Search in Google Scholar PubMed

[166] Muller N., Schwarz M.J., The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression, Mol. Psychiatry, 2007a, 12, 988–1000 http://dx.doi.org/10.1038/sj.mp.400200610.1038/sj.mp.4002006Search in Google Scholar PubMed

[167] McNally L., Bhagwagar Z., Hannestad J., Inflammation, glutamate, and glia in depression: a literature review, CNS Spectr., 2008, 13, 501–510 10.1017/S1092852900016734Search in Google Scholar

[168] Taylor M.W., Feng G.S., Relationship between interferon gamma, indoleamine 2, 3-dioxygenase, and tryptophan catabolism, FASEB J., 1991, 5, 2516–2522 10.1096/fasebj.5.11.1907934Search in Google Scholar

[169] Pickering M., Cumiskey D., O’Connor J.J., Actions of TNF-α on glutamatergic synaptic transmission in the central nervous system, Exp. Physiol., 2005, 90, 663–670 http://dx.doi.org/10.1113/expphysiol.2005.03073410.1113/expphysiol.2005.030734Search in Google Scholar

[170] Fujigaki H., Saito K., Fujigaki S., Takemura M., Sudo K., Ishiguro H., et al., The signal transducer and activator of transcription 1 alpha and interferon regulatory factor 1 are not essential for the induction of indoleamine 2, 3-dioxygenase by lipopolysaccharide: Involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways, and synergistic effect of several proinflammatory cytokines, J. Biochem., 2006, 139, 655–662 http://dx.doi.org/10.1093/jb/mvj07210.1093/jb/mvj072Search in Google Scholar

[171] Myint A.M., Kim Y.K., Cytokine-serotonin interactions through IDO: a neurodegeneration hypothesis of depression, Med. Hypotheses, 2003, 61, 519–525 http://dx.doi.org/10.1016/S0306-9877(03)00207-X10.1016/S0306-9877(03)00207-XSearch in Google Scholar

[172] Stone T.W., Neuropharmacology of quinolinic and kynurenic acids, Pharmacol. Rev., 1993, 45, 309–379 Search in Google Scholar

[173] Sanacora G., Gueorguieva R., Epperson C.N., Wu Y.T., Appel M., Rothman D.L., et al., Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression, Arch. Gen. Psychiatry, 2004, 61, 705–713 http://dx.doi.org/10.1001/archpsyc.61.7.70510.1001/archpsyc.61.7.705Search in Google Scholar PubMed

[174] Myint A.M., Kim Y.K., Verkerk R., Scharpe S., Steinbusch H., Leonard B., Kynurenine pathway in major depression: evidence of impaired neuroprotection, J. Affect. Disord., 2007, 98, 143–151 http://dx.doi.org/10.1016/j.jad.2006.07.01310.1016/j.jad.2006.07.013Search in Google Scholar PubMed

[175] Raison C.L., Dantzer R., Kelley K.W., Lawson M.A., Woolwine B.J., Vogt G., et al., CSF concentrations of brain tryptophan and kynurenines during stimulation with IFN-alpha: relationship to CNS immune responses and depression, Mol. Psychiatry, 2010, 15, 393–403 http://dx.doi.org/10.1038/mp.2009.11610.1038/mp.2009.116Search in Google Scholar PubMed PubMed Central

[176] Zarate C.A. Jr., Quiroz J.A., Singh J.B., Denicoff K.D., De Jesus G., Luckenbaugh D.A., et al., An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression, Biol. Psychiatry, 2005, 57, 430–432 http://dx.doi.org/10.1016/j.biopsych.2004.11.02310.1016/j.biopsych.2004.11.023Search in Google Scholar PubMed

[177] Krystal J.H., Karper L.P., Seibyl J.P., Freeman G.K., Delaney R., Bremner J.D., et al., Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses, Arch. Gen. Psychiatry, 1994, 51, 199–214 10.1001/archpsyc.1994.03950030035004Search in Google Scholar PubMed

[178] Kim J.S., Schmid-Burgk W., Claus D., Kornhuber H.H., Increased serum glutamate in depressed patients, Arch. Psychiatr. Nervenkr., 1982, 232, 299–304 http://dx.doi.org/10.1007/BF0034549210.1007/BF00345492Search in Google Scholar

[179] Pittenger C., Sanacora G., Krystal J.H., The NMDA receptor as a therapeutic target in major depressive disorder, CNS Neurol. Disord. Drug Targets, 2007, 6, 101–115 http://dx.doi.org/10.2174/18715270778036326710.2174/187152707780363267Search in Google Scholar

[180] Zawilska J.B., Rosiak J., Senderecka M., Nowak J.Z., Suppressive effect of NMDA receptor antagonist MK-801 on nocturnal serotonin N-acetyl transferase activity in the rat pineal gland, Pol. J. Pharmacol., 1997, 49, 479–483 Search in Google Scholar

[181] Swerdlow N.R., van Bergeijk D.P., Bergsma F., Weber E., Talledo J., The effects of memantine on prepulse inhibition, Neuropsychopharmacol., 2009, 34, 1854–1864 http://dx.doi.org/10.1038/npp.2009.710.1038/npp.2009.7Search in Google Scholar

[182] Muller N., Schwarz M., The immunological basis of glutamatergic disturbance in Schizophrenia: towards an integrated view, J. Neural Transm., 2007b (sppl. 72), 263–280 Search in Google Scholar

[183] Muller N., Myint A.M., Scharz M.J., Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects, Curr. Pharm. Des., 2011, 17, 130–136 http://dx.doi.org/10.2174/13816121179504955210.2174/138161211795049552Search in Google Scholar

[184] Carlsson A., The current status of the dopamine hypothesis of schizophrenia, Neuropsychopharmacology, 1988, 1, 179–186 http://dx.doi.org/10.1016/0893-133X(88)90012-710.1016/0893-133X(88)90012-7Search in Google Scholar

[185] Jentsch J.D., Roth R.H., The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia, Neuropsychopharmacol., 1999, 20, 201–225 http://dx.doi.org/10.1016/S0893-133X(98)00060-810.1016/S0893-133X(98)00060-8Search in Google Scholar

[186] Hui C., Wardwell B., Tsai G.E., Novel Therapies for Schizophrenia: Understanding the Glutamatergic Synapse and Potential Targets for Altering N-methyl-D-aspartate Neurotransmission, Recent Pat. CNS Drug Discov., 2009, 4, 220–238 http://dx.doi.org/10.2174/15748890978910485710.2174/157488909789104857Search in Google Scholar PubMed

[187] Mezler M., Geneste H., Gault L., Marek G.J., LY-2140023, a prodrug of the group II metabotropic glutamate receptor agonist LY-404039 for the potential treatment of schizophrenia, Curr. Opin.Investig. Drugs, 2010, 11, 833–845 Search in Google Scholar

[188] Stone T.W., Darlington L.G., Endogenous kynurenines as targets for drug discovery and development, Nat. Rev. Drug Discov., 2002, 1, 609–620 http://dx.doi.org/10.1038/nrd87010.1038/nrd870Search in Google Scholar PubMed

[189] Guillemin G.J., Kerr S.J., Smythe G.A., Smith D.G., Kapoor V., Armati P.J., et al., Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection, J. Neurochem., 2001, 78, 842–853 http://dx.doi.org/10.1046/j.1471-4159.2001.00498.x10.1046/j.1471-4159.2001.00498.xSearch in Google Scholar PubMed

[190] Schwarcz R., The kynurenine pathway of tryptophan degradation as a drug target, Curr.Opin.Pharmacol., 2004, 4, 12–17 http://dx.doi.org/10.1016/j.coph.2003.10.00610.1016/j.coph.2003.10.006Search in Google Scholar PubMed

[191] Guillemin G.J., Smythe G., Takikawa O., Brew B. J., Expression of indoleamine 2, 3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons, Glia, 2005, 49, 15–23 http://dx.doi.org/10.1002/glia.2009010.1002/glia.20090Search in Google Scholar

[192] Xiao B.G., Link H., Is there a balance between microglia and astrocytes in regulating Th1/Th2-cell responses and neuropathologies? Immunol. Today, 1999, 20, 477–479 http://dx.doi.org/10.1016/S0167-5699(99)01501-710.1016/S0167-5699(99)01501-7Search in Google Scholar

[193] Aloisi F., Ria F., Adorini L., Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes, Immunol. Today, 2000, 21, 141–147 http://dx.doi.org/10.1016/S0167-5699(99)01512-110.1016/S0167-5699(99)01512-1Search in Google Scholar

[194] Rothermundt M., Ohrmann P., Abel S., Siegmund A., Pedersen A., Ponath G., et al., Glial cell activation in a subgroup of patients with schizophrenia indicated by increased S100B serum concentrations and elevated myo-inositol, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31, 361–364 http://dx.doi.org/10.1016/j.pnpbp.2006.09.01310.1016/j.pnpbp.2006.09.013Search in Google Scholar

[195] Grohmann U., Fallarino F., Puccetti P., Tolerance, DCs and tryptophan: much ado about IDO, Trends Immunol., 2003, 24, 242–248 http://dx.doi.org/10.1016/S1471-4906(03)00072-310.1016/S1471-4906(03)00072-3Search in Google Scholar

[196] Miller C.L., Llenos I.C., Dulay J.R., Barillo M.M., Yolken R.H., Weis S., Expression of the kynurenine pathway enzyme tryptophan 2, 3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia, Neurobiol. Dis., 2004, 15, 618–629 http://dx.doi.org/10.1016/j.nbd.2003.12.01510.1016/j.nbd.2003.12.015Search in Google Scholar

[197] Erhardt S., Schwieler, L., Engberg G., Kynurenic acid and schizophrenia, Adv. Exp. Med. Biol., 2003, 527, 155–165 10.1007/978-1-4615-0135-0_18Search in Google Scholar

[198] Linderholm K.R., Skogh E., Olsson S.K., Dahl M.L., Holtze M., Engberg G., et al., Increased levels of kynurenine and kynurenic acid in the CSF of patients with Schizophrenia, Schizophr. Bull., (In press) doi:10.1093/schbul/sbq086 10.1093/schbul/sbq086Search in Google Scholar

[199] Erhardt S., Blennow K., Nordin C., Skogh E., Lindstrom L.H., Engberg G., Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia, Neurosci. Lett., 2001, 313, 96–98 http://dx.doi.org/10.1016/S0304-3940(01)02242-X10.1016/S0304-3940(01)02242-XSearch in Google Scholar

[200] Schwarcz R., Rassoulpour A., Wu H.Q., Medoff D., Tamminga C.A., Roberts R.C., Increased cortical kynurenate content in schizophrenia, Biol. Psychiatry, 2001, 50, 521–530 http://dx.doi.org/10.1016/S0006-3223(01)01078-210.1016/S0006-3223(01)01078-2Search in Google Scholar

[201] Borland L.M., Michael A.C., Voltammetric study of the control of striatal dopamine release by glutamate, J. Neurochem., 2004, 91, 220–229 http://dx.doi.org/10.1111/j.1471-4159.2004.02708.x10.1111/j.1471-4159.2004.02708.xSearch in Google Scholar

[202] Kim J.S., Kornhuber H.H., Schmid-Burgk W., Holzmuller B., Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia, Neurosci. Lett., 1980, 20, 379–382 http://dx.doi.org/10.1016/0304-3940(80)90178-010.1016/0304-3940(80)90178-0Search in Google Scholar

[203] Tsai G., Passani L.A., Slusher B.S., Carter R., Baer L., Kleinman J.E., et al., Abnormal excitatory neurotransmitter metabolism in schizophrenic brains, Arch. Gen. Psychiatry, 1995, 52, 829–836 10.1001/archpsyc.1995.03950220039008Search in Google Scholar PubMed

[204] Koo J.W., Russo S.J., Ferguson D., Nestler E.J., Duman R.S., Nuclear factor-kB is a critical mediator of stress impaired neurogenesis and depressive behaviour, Proc. Natl. Acad. Sci. USA, 2010, 107, 2669–2674 http://dx.doi.org/10.1073/pnas.091065810710.1073/pnas.0910658107Search in Google Scholar PubMed PubMed Central

[205] Madrigal J.L.M., Moro M.A., Lizasoain I., Lorenzo P., Castrillo A., Bosca L., et al., Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kBmediated mechanisms, J Neurochem., 2001, 76, 532–538 http://dx.doi.org/10.1046/j.1471-4159.2001.00108.x10.1046/j.1471-4159.2001.00108.xSearch in Google Scholar PubMed

[206] Packer M.A., Stasiv Y., Benraiss A., Chmielnicki E., Grinberg A., Heiner W., et al., Nitric oxide negatively regulates mammalian adult neurogenesis, Proc. Natl. Acad. Sci. USA, 2003, 100, 9566–9571 http://dx.doi.org/10.1073/pnas.163357910010.1073/pnas.1633579100Search in Google Scholar PubMed PubMed Central

[207] Zhou Q.G., Hu Y., Hua Y., Hu M., Luo C.X., Han X., et al. Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis, J. Neurochem., 2007, 103, 1843–1854 http://dx.doi.org/10.1111/j.1471-4159.2007.04914.x10.1111/j.1471-4159.2007.04914.xSearch in Google Scholar PubMed

[208] Bachis A., Cruz M.I., Nosheny R.L., Mocchetti I., Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex, Neurosci. Lett., 2008, 442, 104–108 http://dx.doi.org/10.1016/j.neulet.2008.06.08110.1016/j.neulet.2008.06.081Search in Google Scholar PubMed PubMed Central

[209] Kubera M., Obuchowicz E., Goehler L., Brzeszcz J., Maes M., In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35, 744–759 http://dx.doi.org/10.1016/j.pnpbp.2010.08.02610.1016/j.pnpbp.2010.08.026Search in Google Scholar PubMed

[210] McKernan D.P., Dinan T.G., Cryan J.F., “Killing the Blues”: A role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog. Neurobiol., 2009, 88, 246–263 http://dx.doi.org/10.1016/j.pneurobio.2009.04.00610.1016/j.pneurobio.2009.04.006Search in Google Scholar PubMed

[211] Harlan J., Chen Y., Gubbins E., Mueller R., Roch J.M., Walter K., et al., Variants in Apaf-1 segregating with major depression promote apoptosome function, Mol. Psychiatry, 2006, 11, 76–85 http://dx.doi.org/10.1038/sj.mp.400175510.1038/sj.mp.4001755Search in Google Scholar

[212] Sorrells S.F., Sapolsky R.M., An inflammatory review of glucocorticoid actions in the CNS, Brain Behav. Immun., 2007, 21, 259–272 http://dx.doi.org/10.1016/j.bbi.2006.11.00610.1016/j.bbi.2006.11.006Search in Google Scholar

[213] Garcia-Bueno B., Caso J.R., Leza J.C., Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms, Neurosci. Biobehav. Rev., 2008a, 32, 1136–1151 http://dx.doi.org/10.1016/j.neubiorev.2008.04.00110.1016/j.neubiorev.2008.04.001Search in Google Scholar

[214] Garcia-Bueno B., Madrigal J.L., Pérez-Nievas B.G., Leza J.C., Stress mediators regulate brain prostaglandin synthesis and peroxisome proliferator-activated receptor-gamma activation after stress in rats, Endocrinology, 2008b, 149, 1969–1978 http://dx.doi.org/10.1210/en.2007-048210.1210/en.2007-0482Search in Google Scholar

[215] Nair A., Bonneau R.H., Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation, J. Neuroimmunol., 2006, 171, 72–85 http://dx.doi.org/10.1016/j.jneuroim.2005.09.01210.1016/j.jneuroim.2005.09.012Search in Google Scholar

[216] Sapolsky R.M., Is impaired neurogenesis relevant to the affective symptoms of depression? Biol. Psychiatry, 2004, 56, 137–139 http://dx.doi.org/10.1016/j.biopsych.2004.04.01210.1016/j.biopsych.2004.04.012Search in Google Scholar

[217] Barrientos R.M., Sprunger D.B., Campeau S., Higgins E.A., Watkins L.R., Rudy J.W., et al., Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist, Neuroscience, 2003, 121, 847–853 http://dx.doi.org/10.1016/S0306-4522(03)00564-510.1016/S0306-4522(03)00564-5Search in Google Scholar

[218] Tong L., Balazs R., Soiampornkul R., Thangipon W., Cotman C.W., Interleukin-1β impairs brain derived neurotrophic factor-induced signal transduction, Neurobiol. Ageing, 2008, 29, 1380–1393 http://dx.doi.org/10.1016/j.neurobiolaging.2007.02.02710.1016/j.neurobiolaging.2007.02.027Search in Google Scholar PubMed PubMed Central

[219] Yolken R.H., Torrey E.F., Viruses, schizophrenia, and bipolar disorder, Clin. Microbiol. Rev., 1995, 8, 131–145 10.1128/CMR.8.1.131Search in Google Scholar PubMed PubMed Central

[220] Pearce B.D., Viruses and psychiatric disorders, In: Siegel A., Zalcman S.S., (Eds.), The neuroimmunological basis of behavioral and mental disorders, Springer Science, 2009, pp.383–410 10.1007/978-0-387-84851-8_18Search in Google Scholar

[221] Buka S.L., Tsuang M.T., Torrey E.F., Klebanoff M.A., Bernstein D., Yolken R.H., Maternal infections and subsequent psychosis among offspring, Arch. Gen. Psychiatry, 2001a, 58, 1032–1037 http://dx.doi.org/10.1001/archpsyc.58.11.103210.1001/archpsyc.58.11.1032Search in Google Scholar

[222] Rapoport J.L., Addington A.M., Frangou S., Psych M.R., The neurodevelopmental model of schizophrenia: update 2005, Mol. Psychiatry, 2005, 10, 434–449 http://dx.doi.org/10.1038/sj.mp.400164210.1038/sj.mp.4001642Search in Google Scholar

[223] DiCicco-Bloom E., Lord C., Zwaigenbaum L., Courchesne E., Dager S.R., Schmitz C., et al., The developmental neurobiology of autism spectrum disorder, J. Neurosci., 2006, 26, 6897–6906 http://dx.doi.org/10.1523/JNEUROSCI.1712-06.200610.1523/JNEUROSCI.1712-06.2006Search in Google Scholar

[224] Brown A.S., Derkits E.J., Prenatal Infection and Schizophrenia: A Review of Epidemiologic and Translational Studies, Am. J. Psychiat., 2010, 167, 261–280 http://dx.doi.org/10.1176/appi.ajp.2009.0903036110.1176/appi.ajp.2009.09030361Search in Google Scholar

[225] Patterson P.H., Maternal influenza infection leads to neuropathology and behavioral abnormalities in adult offspring, Neuropsychopharmacology, 2005, 30, S9–S9 http://dx.doi.org/10.1038/sj.npp.130052410.1038/sj.npp.1300524Search in Google Scholar

[226] Gilmore J.H., Jarskog L.F., Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia, Schizophr. Res., 1997, 24, 365–367 http://dx.doi.org/10.1016/S0920-9964(96)00123-510.1016/S0920-9964(96)00123-5Search in Google Scholar

[227] Buka S.L., Tsuang M.T., Torrey E.F., Klebanoff M.A., Wagner R.L., Yolken R.H., Maternal cytokine levels during pregnancy and adult psychosis, Brain Behav. Immun., 2001b, 15, 411–420 http://dx.doi.org/10.1006/brbi.2001.064410.1006/brbi.2001.0644Search in Google Scholar PubMed

[228] Brown A.S., Hooton J., Schaefer C.A., Zhang H., Petkova E., Babulas V., et al., Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring, Am. J. Psychiat., 2004, 161, 889–895 http://dx.doi.org/10.1176/appi.ajp.161.5.88910.1176/appi.ajp.161.5.889Search in Google Scholar PubMed

[229] Ellman L.M., Deicken R.F., Vinogradov S., Kreman W.S., Poole J.H., Kern D.M., et al., Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8, Schizophr. Res., 2010, 121, 46–54 http://dx.doi.org/10.1016/j.schres.2010.05.01410.1016/j.schres.2010.05.014Search in Google Scholar PubMed PubMed Central

[230] Balschun D., Wetzel W., Del Rey A., Pitossi F., Schneider H., Zuschratter W., et al., Interleukin-6: a cytokine to forget, FASEB J., 2004, 18, 1788–1790 10.1096/fj.04-1625fjeSearch in Google Scholar PubMed

[231] Sparkman N.L., Buchanan J.B., Heven J.R., Chen J., Beverly J.L., Johnson R.W., et al., Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers, Neuroscience, 2006, 26, 10709–10716 http://dx.doi.org/10.1523/JNEUROSCI.3376-06.200610.1523/JNEUROSCI.3376-06.2006Search in Google Scholar PubMed PubMed Central

[232] Smith S.E.P., Li J., Garbett K., Mirnics K., Patterson P.H., Maternal Immune Activation alters fetal brain development through interleukin-6, J. Neurosci., 2007, 27, 10695–10702 http://dx.doi.org/10.1523/JNEUROSCI.2178-07.200710.1523/JNEUROSCI.2178-07.2007Search in Google Scholar PubMed PubMed Central

[233] Girard S., Tremblay L., Lepage M., Sebire G., IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation, J. Immunol., 2010, 184, 3997–4005 http://dx.doi.org/10.4049/jimmunol.090334910.4049/jimmunol.0903349Search in Google Scholar PubMed

[234] Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A., Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3, Nature, 2001, 413, 732–738 http://dx.doi.org/10.1038/3509956010.1038/35099560Search in Google Scholar PubMed

[235] De Miranda J., Yaddanapudi K., Hornig M., Lipkin W.I., Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5, FASEB J, 2009, 23, 1064–1071 http://dx.doi.org/10.1096/fj.08-12143410.1096/fj.08-121434Search in Google Scholar PubMed PubMed Central

[236] De Miranda J., Yaddanapudi K., Horing M., Villar G., Serge R., Lipkin W.I., Induction of Toll-Like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances, mBio, 2010, 1(4), Doi:10.1128/mBio.00176-10 10.1128/mBio.00176-10Search in Google Scholar PubMed PubMed Central

[237] Meyer U., Yee B.K., Feldon J., The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist, 2007, 13, 241–256 http://dx.doi.org/10.1177/107385840629640110.1177/1073858406296401Search in Google Scholar PubMed

[238] McAlonan G.M., Li Q., Cheung C., The timing and specificity of prenatal immune risk factors for autism model in the mouse and relevance to schizophrenia, Neurosignals, 2010, 18, 129–139 http://dx.doi.org/10.1159/00032108010.1159/000321080Search in Google Scholar PubMed

[239] Meyer U., Feldon J., Yee B.K., A review of the fetal brain cytokine imbalance hypothesis of schizophrenia, Schizophr. Bull., 2009, 35, 959–972 http://dx.doi.org/10.1093/schbul/sbn02210.1093/schbul/sbn022Search in Google Scholar PubMed PubMed Central

[240] Leonard B.E., The concept of depression as a dysfunction of the immune system, Curr. Immunol. Rev., 2010, 6, 205–212 http://dx.doi.org/10.2174/15733951079182383510.2174/157339510791823835Search in Google Scholar PubMed PubMed Central

[241] Bayer T. A., Buslei R., Havas L., Falkai P., Evidence for activation of microglia in patients with psychiatric illnesses, Neurosci. Lett., 1999, 271, 126–128 http://dx.doi.org/10.1016/S0304-3940(99)00545-510.1016/S0304-3940(99)00545-5Search in Google Scholar

[242] Wierzba-Bobrowicz T., Lewandowskan E., Lechowicz W., Stepien T., Pasennik E., Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics, Folia Neuropathol., 2005, 43, 81–89 Search in Google Scholar

[243] Jaaro-Peled H., Ayhan Y., Pletnikov M. V., Sawa A., Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models, Schizophr. Bull., 2007, 36, 301–313 http://dx.doi.org/10.1093/schbul/sbp13310.1093/schbul/sbp133Search in Google Scholar

[244] Piontkewitz Y., Assaf Y., Weiner I., Post-pubertal emergence of schizophrenia like abnormalities following prenatal maternal immune system activation and their prevention: modeling the disorder and its prodrome, Int. Brain Res. Org., 2007, 7, 25–33 Search in Google Scholar

[245] Meisenzahl E.M., Rujescu D., Kirner A., Giegling I., Kathmann N., Leinsinger G., et al., Association of an interleukin-1beta genetic polymorphism with altered brain structure in patients with schizophrenia, Am. J. Psychiat., 2001, 158, 1316–1319 http://dx.doi.org/10.1176/appi.ajp.158.8.131610.1176/appi.ajp.158.8.1316Search in Google Scholar

[246] Behrens M.M., Ali S. S., Duggan L.L., Interleukin-6 mediates the increase in NADP-oxidase in the ketamine model of schizophrenia, J. Neurosci., 2008, 28, 13957–13966 http://dx.doi.org/10.1523/JNEUROSCI.4457-08.200810.1523/JNEUROSCI.4457-08.2008Search in Google Scholar

[247] Rajkowska G., Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells, Biol. Psychiatry, 2000, 48, 766–777 http://dx.doi.org/10.1016/S0006-3223(00)00950-110.1016/S0006-3223(00)00950-1Search in Google Scholar

[248] Parashos I.A., Tulper L.A., Blitchington T., Krishnan K.R. Magnetic-resonance morphometry in patient with major depression, Psychiatry Res., 1998, 84, 7–15 http://dx.doi.org/10.1016/S0925-4927(98)00042-010.1016/S0925-4927(98)00042-0Search in Google Scholar

[249] Steingard R.J., Renshaw P.F., Hennen J., Lenox M., Cintron C.B., Young A.D. et al., Smaller frontal lobe white matter volumes in depressed adolescents, Biol. Psychiatry., 2002, 52, 413–417 http://dx.doi.org/10.1016/S0006-3223(02)01393-810.1016/S0006-3223(02)01393-8Search in Google Scholar

[250] Campbell S., Marriott M., Nahmias C., MacQueen G.M., Lower hippocampal volume in patients suffering from major depression: a meta-analysis, Am. J. Psychiat., 2004, 161, 598–607 http://dx.doi.org/10.1176/appi.ajp.161.4.59810.1176/appi.ajp.161.4.598Search in Google Scholar

[251] Leonard B.E., Inflammation, depression and dementia: are they connected? Neurochem. Res., 2007, 32, 1749–1756 http://dx.doi.org/10.1007/s11064-007-9385-y10.1007/s11064-007-9385-ySearch in Google Scholar

[252] Miller G.E., Freedland K.E., Carney R.M., Stetler C.A., Banks W.A., Pathways linking depression, adiposity and inflammatory markers in healthy young adults, Brain Behav. Immun., 2003, 17, 276–285 http://dx.doi.org/10.1016/S0889-1591(03)00057-610.1016/S0889-1591(03)00057-6Search in Google Scholar

[253] Brambilla F., Maggioni M., Blood levels of cytokines in elderly patients with major depressive disorder, Acta Psychiat. Scand., 1998, 97, 309–313 http://dx.doi.org/10.1111/j.1600-0447.1998.tb10005.x10.1111/j.1600-0447.1998.tb10005.xSearch in Google Scholar

[254] Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W., From inflammation to sickness and depression: when the immune system subjugates the brain, Nat. Rev. Neurosci., 2008, 9, 46–56 http://dx.doi.org/10.1038/nrn229710.1038/nrn2297Search in Google Scholar

[255] Capuron L., Ravaud A., Gualde N., Bosmans E., Dantzer R., Maes M., et al., Association between immune activation and early depressive symptoms in cancer patients treated with interleukin-2- based therapy, Psychoneuroendocrinol., 2001, 26, 797–808 http://dx.doi.org/10.1016/S0306-4530(01)00030-010.1016/S0306-4530(01)00030-0Search in Google Scholar

[256] Berthold-Losleben M., Heitmann S., Himmerich H., Anti-inflammatory drugs in psychiatry, Inflamm. Allergy Drugs Targets, 2009, 8, 266–276 http://dx.doi.org/10.2174/18715280978935222110.2174/187152809789352221Search in Google Scholar

[257] Davis A., Gihooley M., Agius M., Using non-steroidal anti-inflammatory drugs in the treatment of depression, Psychiatr. Danub., 2010 (suppl 1), S49–52 Search in Google Scholar

[258] Muller N., Schwarz M.J., Anti-inflammatory treatment approaches in major depression, Eur. Psychiatry, 2011, 26, 2093 http://dx.doi.org/10.1016/S0924-9338(11)73796-810.1016/S0924-9338(11)73796-8Search in Google Scholar

[259] Maas D.W., Westendorp R.G., Williams J.M., de Craen A.J., van der Mast R.C., TNF-α antagonist infliximab in the treatment of depression in older adults: results of a prematurely ended, randomized, placebo-controlled trial, J. Clin. Psychopharmacol., 2010, 30, 343–345 http://dx.doi.org/10.1097/JCP.0b013e3181dcf0de10.1097/JCP.0b013e3181dcf0deSearch in Google Scholar PubMed

Published Online: 2011-6-26
Published in Print: 2011-6-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-011-0019-0/html
Scroll to top button