Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 24, 2008

Defects in quantum dots of IIB–VI semiconductors

  • V. Babentsov EMAIL logo and F. Sizov
From the journal Opto-Electronics Review

Abstract

This review discusses the properties of structural defects in quantum dots of IIB–VI semiconductors. A great part of this knowledge has been developed in the last years and combined with the improvement in passivation technologies has contributed significantly to the nanotechnology.

In this review we introduced the main characterization methods which are used for the study of defects in the nanoform of semiconductors, presented a short description of how native defects can influence the emission spectra, underlined the restrictions which the Auger and deep-level defect recombination imposes on the excitonic emission. We also highlighted the importance of the defect passivation associated with efficiency and photostability of devices.

[1] Physics and Chemistry of II–VI Compounds, p. 317, edited by M. Aven and J.S. Prener, North Holland Pub. Co., Amsterdam, 1967. Search in Google Scholar

[2] I. Hernandez-Calderon, II–VI Semiconductor Materials and Their Applications, edited by M.C. Tamargo Taylor & Franics, New York, 2002. Search in Google Scholar

[3] J.I. Pankove, Optical Processes in Semiconductors, p. 413, Dover, New York, 1971. Search in Google Scholar

[4] T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, “Cadmium zinc telluride and its use as a nuclear radiation detector material”, Mater. Sci. Eng. R32, 103–189 (2001). 10.1016/S0927-796X(01)00027-4Search in Google Scholar

[5] Al.L. Efros and A.L. Efros, “Interband absorption of light in a semiconductor sphere”, Fiz. Tekh. Poluprovodn. 16, 1209–1214 (1982); Sov. Phys. Semicond. 16, 772–775 (1982). Search in Google Scholar

[6] L.E. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites”, J. Chem. Phys. 79, 5566–5571 (1983). http://dx.doi.org/10.1063/1.44567610.1063/1.445676Search in Google Scholar

[7] A.P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots”, Science 271 933–937 (1996). http://dx.doi.org/10.1126/science.271.5251.93310.1126/science.271.5251.933Search in Google Scholar

[8] G.D. Watkins, “Intrinsic defects in II–VI semiconductors”, J. Cryst. Growth 159, 338 (1996). http://dx.doi.org/10.1016/0022-0248(95)00680-X10.1016/0022-0248(95)00680-XSearch in Google Scholar

[9] G.F. Neumark, “Defects in wide band gap II–VI crystals”, Mater. Sci. Eng. R31, 1–46 (1997). 10.1016/S0927-796X(97)00008-9Search in Google Scholar

[10] U. Woggon, “Optical properties of semiconductor quantum dots”, Springer Tr. Mod. Phys. 136, 1997. Search in Google Scholar

[11] H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission”, Phys. Rev. B56, 1496–1508 (1997). Search in Google Scholar

[12] P.C. Sercel, A.L. Efros, and M. Rosen, “Intrinsic gap states in semiconductor nanocrystals”, Phys. Rev. Lett. 83, 2394–2397 (1999). http://dx.doi.org/10.1103/PhysRevLett.83.239410.1103/PhysRevLett.83.2394Search in Google Scholar

[13] E. Lifshitz, I. Dag, I. Litvin, G. Hodes, S. Gorer, R. Reisfeld, M. Zelner, and H. Minti, “Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods”, Chem. Phys. Lett. 288, 188–196 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00283-810.1016/S0009-2614(98)00283-8Search in Google Scholar

[14] E. Lifshitz, A. Glozman, I.D. Litvin, and H. Porteanu, “Optically detected magnetic resonance studies of the surface/interface properties of II–VI semiconductor quantum dots”, J. Phys. Chem. B104, 10449–10461 (2000). 10.1021/jp000876sSearch in Google Scholar

[15] K. Gokhberg, A. Glozman, E. Lifshitz, T. Maniv, M.C. Schlamp, and P. Alivisatos, “Electron-hole paramagnetic resonance of spherical CdSe nanocrystals”, J. Chem. Phys. 117, 2909–2913 (2002). http://dx.doi.org/10.1063/1.149140710.1063/1.1491407Search in Google Scholar

[16] F. Trojánek, R. Cingolani, D. Cannoletta, D. Mikeš, P. Němec, E. Uhliřva, J. Rohovec, and P. Malý, “Tailoring of nanocrystal sizes in CdSe films prepared by chemical deposition”, J. Cryst. Growth 209, 695–700 (2000). http://dx.doi.org/10.1016/S0022-0248(99)00752-610.1016/S0022-0248(99)00752-6Search in Google Scholar

[17] M.Ya. Valakh, Y.G. Sadofeev, N.O. Korsunska, G.N. Semenova, V.V. Strelchuk, L.V. Borkovska, M.V. Vuychik, and M. Sharibaev, “Deep-level defects in CdSe/ZnSe QDs and giant anti-Stokes photoluminescence”, Semiconductor Physics, Quantum Electronic & Optoelectronics 5, 254–257 (2002). 10.15407/spqeo5.03.254Search in Google Scholar

[18] V. Babentsov, J. Riegler, J. Schneider, O. Ehlert, T. Nann, and M. Fiederle, “Deep level defect luminescence in cadmium selenide nano-crystals films”, J. Cryst. Growth 280, 502–508 (2005). http://dx.doi.org/10.1016/j.jcrysgro.2005.03.08610.1016/j.jcrysgro.2005.03.086Search in Google Scholar

[19] V. Babentsov, J. Riegler, J. Schneider, M. Fiederle, and T. Nann, “Excitation dependence of steady-state photoluminescence in CdSe nanocrystal films”, J. Phys. Chem. B10, 15349–15354 (2005). 10.1021/jp052229cSearch in Google Scholar PubMed

[20] V. Babentsov, “Defects with deep donor and acceptor levels in nanocrystals of CdTe and CdSe”, Semiconductor Physics, Quantum Electronics & Optoelectronics 9, 94–98 (2006). 10.15407/spqeo9.03.094Search in Google Scholar

[21] L. Kronik, N. Ashkenasy, M. Leibovitch, E. Fefer, Y. Shapira, S. Gorer, and G. Hodes, “Surface states and photovoltaic effects in CdSe quantum dot films”, J. Electrochem. Soc. 145, 1748–1755 (1998). http://dx.doi.org/10.1149/1.183855210.1149/1.1838552Search in Google Scholar

[22] B. Alperson, I. Rubinstein, and G. Hodes, “Identification of surface states on individual CdSe quantum dots by room-temperature conductance spectroscopy”, Phys. Rev. B63, 0813031 (2001). 10.1103/PhysRevB.63.081303Search in Google Scholar

[23] S.K. Poznyak, N.P. Osipovich, A. Shavel, D.V. Talapin, M. Gao, A. Eychmuller, and N. Gaponik, “Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution”, J. Phys. Chem. B109, 1094–1100 (2005). 10.1021/jp0460801Search in Google Scholar PubMed

[24] E. Kuçur, W. Bulcking, R. Giernoth, and T. Nann, “Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry”, J. Chem. Phys. 119, 2333–2337 (2003). http://dx.doi.org/10.1063/1.158283410.1063/1.1582834Search in Google Scholar

[25] E. Kuçur, W. Bulcking, R. Giernoth, and T. Nann, “Determination of defect states in semiconductor nanocrystals by cyclic voltammetry”, J. Phys. Chem. B109, 20355–20360 (2005). 10.1021/jp053891bSearch in Google Scholar PubMed

[26] P. Swaminathan, V.N. Antonov, J.A.N.T. Soares, J.S. Palmer, and J.H. Weaver, “Cd-based II–VI semiconductor nanostructures produced by buffer-layer-assisted growth: Structural evolution and photoluminescence”, Phys. Rev. B73, 1254301 (2006). Search in Google Scholar

[27] U. Woggon, E. Herz, O. Scholps, M.V. Artemyev, C. Arens, N. Rousseau, D. Schikora, K. Lischka, D. Litvinov, and D. Gerthsen, “Hybrid epitaxial-colloidal semiconductor nanostructures”, Nano Letters 5, 485–490 (2005). http://dx.doi.org/10.1021/nl048087010.1021/nl0480870Search in Google Scholar PubMed

[28] V.N. Antonov, J.A.N.T. Soares, J.S. Palmer, J.H. Weaver, and P. Swaminathan, “Photoluminescence of CdSe quantum dots and rods from buffer-layer-assisted growth”, Appl. Phys. Lett. 88, 1219061 (2006). http://dx.doi.org/10.1063/1.218741110.1063/1.2187411Search in Google Scholar

[29] A.D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems”, Adv. Phys. 51, 799–890 (2002). http://dx.doi.org/10.1080/0001873011011745110.1080/00018730110117451Search in Google Scholar

[30] Semiconductor Nanocrystals: from Basic Principles to Applications, p. 290, edited by A.L. Efros, D.J. Lockwood, and L. Tsybeskov, Kluwer Academic, New York, 2003. Search in Google Scholar

[31] T. Rajh, O.I. Micic, and A.J. Nozik, “Synthesis and characterization of colloidal CdTe quantum dots”, J. Phys. Chem. 97, 11999–12003 (1993). http://dx.doi.org/10.1021/j100148a02610.1021/j100148a026Search in Google Scholar

[32] F. Wu, J.W. Lewis, D.S. Kliger, and J.Z. Zhang, “Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles”, J. Chem. Phys. 118, 12–16 (2003). http://dx.doi.org/10.1063/1.153373310.1063/1.1533733Search in Google Scholar

[33] D. Katz, T. Wizansky, O. Millo, E. Rothenberg, T. Mokari, and U. Banin, “Size dependent tunneling and optical spectroscopy of CdSe quantum rods”, Phys. Rev. Lett. 89, 0868011 (2002). Search in Google Scholar

[34] T.S. Jeong, P.Y. Yu, and T.S. Kim, “Temperature dependence of the free excitons in a CdS single crystal”, J. Korean Phys. Soc. 36, 102–105 (2000). Search in Google Scholar

[35] L.E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state”, J. Chem. Phys. 80, 4403–4409 (1984). http://dx.doi.org/10.1063/1.44721810.1063/1.447218Search in Google Scholar

[36] C.F. Lo and R. Sollie, “Mass dependence of ground-state properties of wannier exciton in a quantum dot”, Solid State Commun. 79, 775–778 (1991). http://dx.doi.org/10.1016/0038-1098(91)90794-V10.1016/0038-1098(91)90794-VSearch in Google Scholar

[37] S.I. Pokutnyi, “Theory of size quantization of exciton in quasi-zero-dimensional semiconductor structures”, Phys. Status Solidi B173, 607–613 (1992), S.I. Pokutnyi, “Exciton states in semiconductor spherical nanostructures”, 39, 1066–1070 (2005). http://dx.doi.org/10.1002/pssb.222173021210.1002/pssb.2221730212Search in Google Scholar

[38] C.F. Lo and R. Sollie, “The mass dependence of the ground-state properties of the Wannier exciton in a quantum box”, J. Phys. Condens. Mat. 5, 8587–8594 (1993). http://dx.doi.org/10.1088/0953-8984/5/45/01110.1088/0953-8984/5/45/011Search in Google Scholar

[39] G.T. Einevoll, “Confinement of excitons in quantum dots”, Phys. Rev. B45, 3410–3417 (1992). 10.1103/PhysRevB.45.3410Search in Google Scholar

[40] S.A. Safwan, M.H. Hekmat, and N.A. El-Meshad, “Exciton state in a quantum dot”, Fizika A (Zagreb) 16, 1–10 (2007). Search in Google Scholar

[41] A. Aharoni, A. Eichhofer, D. Fenske, and U. Banin, “Optical spectroscopy of cadmium-chalcogenide clusters of the type [Cd10E4(E’Ph)12(PR3)4], (E = Te, Se; E′=Se, S)”, Opt. Mat. 24, 43–49 (2003). http://dx.doi.org/10.1016/S0925-3467(03)00103-410.1016/S0925-3467(03)00103-4Search in Google Scholar

[42] V.N. Soloviev, A. Eichhofer, D. Fenske, and U. Banin, “Molecular limit of a bulk semiconductor: size dependence of the ‘band gap’ in CdSe cluster molecules”, J. Am. Chem. Soc. 122, 2673–2674 (2000). http://dx.doi.org/10.1021/ja994036710.1021/ja9940367Search in Google Scholar

[43] E.X. Ping and V.L. Dalal, “Electron-hole quantum confined states affected by point charge in semiconductor crystallites”, Solid State Commun. 82, 749–753 (1992). http://dx.doi.org/10.1016/0038-1098(92)90157-510.1016/0038-1098(92)90157-5Search in Google Scholar

[44] N. Chestnoy, T.D. Harris, R. Hull, and L.E. Brus, “Luminescence and photophsics of CdS semiconductor cluster: The nature of the emitting electronic state”, J. Phys. Chem. 90, 3393–3399 (1986). http://dx.doi.org/10.1021/j100406a01810.1021/j100406a018Search in Google Scholar

[45] M.G. Bawendi, W.L. Wilson, L. Rothberg, P.J. Carroll, T.M. Jedju, M.L. Steigerwald, and L.E. Brus, “Electronic structure and photoexited-carrier dynamics in nanometer-size CdSe clusters”, Phys. Rev. Lett. 65, 1623–1626 (1990). http://dx.doi.org/10.1103/PhysRevLett.65.162310.1103/PhysRevLett.65.1623Search in Google Scholar

[46] V.A. Fonoberov, K.A. Alim, and A.A. Balandin, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals”, Phys. Rev. B73, 1653171 (2006). 10.1103/PhysRevB.73.165317Search in Google Scholar

[47] H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission”, Phys. Rev. B56, 1496–1508 (1997). Search in Google Scholar

[48] L.W. Wang and A. Zunger, “Pseudopotential calculations of nanoscale CdSe quantum dots”, Phys. Rev. B53, 9579–9582 (1996). 10.1103/PhysRevB.53.9579Search in Google Scholar

[49] M. Califano, A. Franceschetti, and A. Zunger, “Temperature-dependence of excitonic radiative decay in CdSe quantum dots: The role of surface hole traps”, Nano Lett. 5, 2360–2364 (2005). http://dx.doi.org/10.1021/nl051027p10.1021/nl051027pSearch in Google Scholar

[50] P.C. Sercel, Al.L. Efros, and M. Rosen, “Intrinsic gap states in semiconductor nanocrystals”, Phys. Rev. Lett. 83, 2394–2397 (1999). http://dx.doi.org/10.1103/PhysRevLett.83.239410.1103/PhysRevLett.83.2394Search in Google Scholar

[51] K.E. Andersen, C.Y. Fong, and W.E. Pickett, “Quantum confinement in CdSe nanocrystallites”, J. Non. Cryst. Solids 299/302, 1105–1110 (2002). http://dx.doi.org/10.1016/S0022-3093(01)01132-210.1016/S0022-3093(01)01132-2Search in Google Scholar

[52] A. Konkar, S. Lu, A. Madhukar, S.M. Hughes, and A.P. Alivisatos, “Semiconductor nanocrystal quantum dots on single crystal semiconductor substrates: high resolution transmission electron microscopy”, Nano Lett. 5, 969–973 (2005). http://dx.doi.org/10.1021/nl050262510.1021/nl0502625Search in Google Scholar PubMed

[53] R. Schneider, H. Kirmse, I. Hähnert, and W. Neumann, “High-resolution analytical transmission electron microscopy of semiconductor quantum structures”, Fresenius’ J. Anal. Chem. 365, 217–220 (1999). http://dx.doi.org/10.1007/s00216005147610.1007/s002160051476Search in Google Scholar

[54] H. Borchert, D.V. Talapin, C. McGinley, S. Adam, A. Lobo, A.R.B. de Castro, T. Möller, and H. Weller, “High resolution photoemission study of CdSe and CdSe/ZnS core-shell nanocrystals”, The J. Chem. Phys. 119, 1800–1807 (2003). http://dx.doi.org/10.1063/1.158009610.1063/1.1580096Search in Google Scholar

[55] P. K. Hansma and J. Tersoff, “Scanning tunneling microscopy”, J. Appl. Phys. 61, R1–R24 (1987). http://dx.doi.org/10.1063/1.33818910.1063/1.338189Search in Google Scholar

[56] S. Kremmer, C. Teichert, E. Pischler, H. Gold, F. Kuchar, and M. Schatzmayr, “Characterization of silicon gate oxides by conducting atomic-force microscopy”, Surf. Interf. Anal. 33, 168–172 (2002). http://dx.doi.org/10.1002/sia.118310.1002/sia.1183Search in Google Scholar

[57] J. Shneider, II–VI Semiconductor Compounds, p. 40, edited by D.G. Thomas, Benjamin, New York, 1967. Search in Google Scholar

[58] Point Defects in Crystals, p. 252, edited by R.K. Watts, Wiley, New York, 1977. Search in Google Scholar

[59] J.J. Davies, “ODMR studies of recombination emission in II–VI compounds”, J. Cryst. Growth 72, 317–325 (1985). http://dx.doi.org/10.1016/0022-0248(85)90165-410.1016/0022-0248(85)90165-4Search in Google Scholar

[60] B.C. Cavenett, “Optically detected magnetic resonance (ODMR) investigations of recombination processes in semiconductors”, Adv. Phys. 30, 475–538 (1981). http://dx.doi.org/10.1080/0001873810010139710.1080/00018738100101397Search in Google Scholar

[61] D.V. Lang, “Deep-level transient spectroscopy: a new method to characterize traps in semiconductors”, J. Appl. Phys. 45, 3023–3032 (1974). http://dx.doi.org/10.1063/1.166371910.1063/1.1663719Search in Google Scholar

[62] R. Magno, Brian R. Bennett, and E.R. Glaser, “Deep level transient capacitance measurements of GaSb self-assembled quantum dots”, J. Appl. Phys. 88, 5843–5849 (2000). http://dx.doi.org/10.1063/1.131839110.1063/1.1318391Search in Google Scholar

[63] C.A. Leatherdale, W.K. Woo, F.V. Mikulec, and M.G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots”, J. Phys. Chem. B106, 7619–7622 (2002). 10.1021/jp025698cSearch in Google Scholar

[64] W. Hoheisel, V.L. Colvin, C.S. Johnson, and A.P. Alivisatos, “Threshold for quasicontinuum absorption and reduced luminescence efficiency in CdSe nanocrystals”, J. Chem. Phys. 101, 8455–8460 (1994). http://dx.doi.org/10.1063/1.46810710.1063/1.468107Search in Google Scholar

[65] Y. Gu, I.L. Kuskovsky, J. Fung, G.F. Neumark, X. Zhou, S.P. Guo, and M.C. Tamargo, “Optical investigation of CdSe/Zn(Be)Se quantum dot structures: size and Cd composition”, Phys. Status Solidi (c) 1, 779–782 (2004). http://dx.doi.org/10.1002/pssc.20030422310.1002/pssc.200304223Search in Google Scholar

[66] M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya, and A.I. Ekimov, “Enhancement of electron-hole exchange interaction in CdSe nanocrystals: A quantum confinement effect”, Phys. Rev. B53, 1336–1342 (1996). Search in Google Scholar

[67] P. Guyot-Sionnest, M. Shim, C. Matranga, and M. Hines, “Intraband relaxation in CdSe quantum dots”, Phys. Rev. B60, R2181–R2184 (1999). 10.1103/PhysRevB.60.R2181Search in Google Scholar

[68] C. Wang, M. Shim, and P. Guyot-Sionnest, “Electrochromic nanocrystal quantum dots”, Science 291, 2390–2392 (2001). http://dx.doi.org/10.1126/science.291.5512.239010.1126/science.291.5512.2390Search in Google Scholar

[69] S. Kim, B. Fisher, H.J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures”, J. Am. Chem. Soc. 125, 11466–11467 (2003). http://dx.doi.org/10.1021/ja036174910.1021/ja0361749Search in Google Scholar

[70] V.I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals”, J. Phys. Chem. B104, 6112–6123 (2000). 10.1021/jp9944132Search in Google Scholar

[71] A.A. Mikhailovsky, A.V. Malko, J.A. Hollingsworth, M.G. Bawendi, and V.I. Klimov, “Multiparticle interactions and stimulated emission in chemically synthesized quantum dots”, Appl. Phys. Lett. 80, 2380–2382 (2002). http://dx.doi.org/10.1063/1.146370410.1063/1.1463704Search in Google Scholar

[72] M. Achermann, J.A. Hollingsworth, and V.I. Klimov, “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals”, Phys. Rev. B68, 2453021 (2003). Search in Google Scholar

[73] I.D. Litvin, H. Porteanu, E. Lifshitz, and A.A. Lipovskii, “Optically detected magnetic resonance studies of CdS nanoparticles grown in phosphate glass”, J. Cryst. Growth 198/199, 313–315 (1999). http://dx.doi.org/10.1016/S0022-0248(98)01218-410.1016/S0022-0248(98)01218-4Search in Google Scholar

[74] C.A. Leatherdale, C.R. Kagan, N.Y. Morgan, S.A. Empedocles, M.A. Kastner, and M.G. Bawendi, “Photoconductivity in CdSe quantum dot solids”, Phys. Rev. B62, 2669–2680 (2000). 10.1103/PhysRevB.62.2669Search in Google Scholar

[75] G.F. Neumark, “Defects in wide band gap II–VI crystals”, Mater. Sci. Eng. R21, 1–46 (1997). 10.1016/S0927-796X(97)00008-9Search in Google Scholar

[76] M. Grundmann and D. Bimberg, “Theory of random population for quantum dots”, Phys. Rev. B55, 9740–9745 (1998). 10.1103/PhysRevB.55.9740Search in Google Scholar

[77] S.A. Crooker, T. Barrick, J.A. Hollingsworth, and V.I. Klimov, “Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime”, Appl. Phys. Lett. 82, 2793–2795 (2003). http://dx.doi.org/10.1063/1.157092310.1063/1.1570923Search in Google Scholar

[78] V.I. Klimov and D.W. McBranch, “Auger-process-induced charge separation in semiconductor nanocrystals”, Phys. Rev. B55, 13173–13179 (1997). 10.1103/PhysRevB.55.13173Search in Google Scholar

[79] C. Burda, S. Link, M.B. Mohamed, and M.A. El-Sayed, “The pump power dependence of the femtosecond relaxation of CdSe nanoparticles observed in the spectral range from visible to infrared”, J. Chem. Phys. 116, 3828–3833 (2002). http://dx.doi.org/10.1063/1.144685110.1063/1.1446851Search in Google Scholar

[80] J.M. Caruge, Y. Chan, V. Sundar, H.J. Eisler, and M.G. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots”, Phys. Rev. B70, 0853161 (2004). 10.1103/PhysRevB.70.085316Search in Google Scholar

[81] M. Kuno, D.P. Fromm, S.T. Johnson, A. Gallagher, and D.J. Nesbitt, “Modelling distributed kinetics in isolated semiconductor quantum dots”, Phys. Rev. B67, 1253041 (2003). 10.1103/PhysRevB.67.125304Search in Google Scholar

[82] X. Brokmann, J.P. Hermier, G. Messin, P. Desbiolles, J.P. Bouchaud, and M. Dahan, “Statistical aging and nonergodicity in the fluorescence of single nanocrystals”, Phys. Rev. Lett. 90, 1206011 (2003). http://dx.doi.org/10.1103/PhysRevLett.90.12060110.1103/PhysRevLett.90.120601Search in Google Scholar PubMed

[83] I. Chung, M. G. Bawendi, “Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots”, Phys. Rev. B70, 1653041 (2004). 10.1103/PhysRevB.70.165304Search in Google Scholar

[84] B.C. Hess, I.G. Okhrimenko, R.C. Davis, B.C. Stevens, Q. Schulzke, K.C. Wright, C.D. Bass, C.D. Evans, and S.L. Summers, “Surface transformation and photoinduced recovery in CdSe nanocrystals”, Phys. Rev. Lett. 86, 3132–3135 (2001). http://dx.doi.org/10.1103/PhysRevLett.86.313210.1103/PhysRevLett.86.3132Search in Google Scholar PubMed

[85] D.F. Underwood, T. Kippeny, and S.J. Rosental, “Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy”, J. Phys. Chem. B105, 436–443 (2001). 10.1021/jp003088bSearch in Google Scholar

Published Online: 2008-7-24
Published in Print: 2008-9-1

© 2008 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-008-0025-0/html
Scroll to top button