Skip to main content

Advertisement

Log in

Comparison of the chaperon activity of glycerol and α-casein on amyloid formation of κ-casein in the presence of glycine and arginine

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Amyloids are insoluble fibers which arise from inappropriately folded versions of proteins and have been associated with the pathology of many neurodegenerative diseases. α-Casein is one of the major components of the casein family which is known to show chaperone-like activity. Glycerol is a polyol compound which acts as a chemical chaperone to increase protein stability and inhibit protein aggregation. In this study, the effect of arginine and glycine on the chaperone ability of α-casein and glycerol against order aggregation of κ-casein was investigated and compared. We found that these additives reduced the chaperone ability of α-casein against the amyloid formation of κ-casein, especially in the presence of arginine. Importantly, our results show that the chaperone action of glycerol is enhanced in the presence of both arginine and glycine. Accordingly, our results suggest that these small molecules associated with glycerol, especially glycine, should be considered as a mechanism for the treatment of amyloid disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANS:

1-anilino-8-naphthalene sulfonic acid

CD:

circular dichroism

DTT:

1,4-dithiothreitol

ThT:

thioflavin T

References

  • Arakawa T. & Tsumoto K. 2003. The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem. Biophys. Res. Commun. 304: 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya J. & Das K.P. 1999. Molecular chaperone-like properties of an unfolded protein, α(s)-casein. J. Biol. Chem. 274: 15505–15509.

    Article  PubMed  CAS  Google Scholar 

  • Crabtree G.R. & Graef I.A. 2004. Harnessing chaperones to generate small-molecule inhibitors of amyloid β aggregation. Science 306: 865–869.

    Article  PubMed  Google Scholar 

  • Creamer L.K. 1991. Some aspects of casein micelle structure, pp. 148–165. In: Parris N. & Barford R. (eds) Interactions in Food Proteins. ACS Symposium Series 454. American Chemical Society, Washington DC.

    Chapter  Google Scholar 

  • Creamer L.K., Plowman J.E., Liddell M.J., Smith M.H. & Hill J.P. 1998. Micelle stability: κ-casein structure and function. J. Dairy. Sci. 81: 3004–3012.

    Article  PubMed  CAS  Google Scholar 

  • Creamer L.K., Richardson T. & Parry D.A.D. 1981. Secondary structure of bovine αS1- and β-casein in solution. Arch. Biochem. Biophys. 211: 689–696.

    Article  PubMed  CAS  Google Scholar 

  • Dunker A.K., Brown C.J., Lawson J.D., Iakoucheva L.M. & Obradovic Z. 2002. Intrinsic disorder and protein function. Biochemistry 41: 6573–6582.

    Article  PubMed  CAS  Google Scholar 

  • Eigel W.N., Butler J.E., Ernstrom C.A., Farrel J.R., Harwalker V.R., Jenness R. & Whitney R.M. 1984. Nomenclature of proteins of cows, milk: fifth revision. J. Dairy. Sci. 67: 1599–1631.

    Article  CAS  Google Scholar 

  • Farrell H.M. Jr, Cooke P.H., Wickham E.D., Piotrowski E.G. & Hoagland P.D. 2003. Influences on bovine κ-casein: reduction and conversion to fibrillar (amyloid) structures. J. Protein Chem. 22: 259–273.

    Article  PubMed  CAS  Google Scholar 

  • Fields G. & Alonso D. 1992. Theory for the aggregation of proteins and copolymers. J. Phys. Chem. 96: 3974–3981.

    Article  CAS  Google Scholar 

  • Fink A.L. 1998. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Curr. Biol. 3: 9–23.

    Google Scholar 

  • Gekko K. & Timasheff S.N. 1981. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 20: 4667–4676.

    Article  PubMed  CAS  Google Scholar 

  • Ghahghaei A., Bathaie S.Z., Shahraki A. & Rahmany Asgarabad F. 2011. Comparison of the chaperoning action of glycerol and β-casein on aggregation of proteins in the presence of crowding agent. Int. J. Pept. Res. Ther. 17: 101–111.

    Article  CAS  Google Scholar 

  • Ghahghaei A., Divsalar A. & Faridi N. 2010. The effects of molecular crowding on the amyloid fibril formation of α-lactalbumin and the chaperone action of α-casein. Protein J. 29: 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Ghahghaei A. & Shafiibafti E. 2010. Structural study of κ-casein during amyloid formation at different temperature. Aus. J. Basic. Appl. Sci. 4: 2257–2266.

    CAS  Google Scholar 

  • Holt C. & Sawyer L. 1993. Caseins as rheomorphic proteins: interpretation of primary and secondary structures of the αS1-, β- and κ-caseins. J. Chem. Soc. 89: 2683–2692.

    CAS  Google Scholar 

  • Kelly S.M. & Price N.C. 2000. The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 1: 349–384.

    Article  PubMed  CAS  Google Scholar 

  • Kruif C.G.D. & May R.P. 1991. κ-Casein micelles: structure, interaction and gelling studied by small angle neutron scattering. Eur. J. Biochem. 200: 431–436.

    Article  PubMed  Google Scholar 

  • Lindner R.A., Kapur A., Mariani M., Titmuss S.T. & Carver J.A. 1998. Structural alterations of α-crystallin during its chaperone action. Eur. J. Biochem. 258: 170–183.

    Article  PubMed  CAS  Google Scholar 

  • McDuffie G.E., Quinn R.G. & Litovitz T.A. 1962. Dielectric properties of glycerol-water mixtures. J. Chem. Phys. 37: 239–242.

    Article  CAS  Google Scholar 

  • Morgan P.E., Treweek T.M., Lindner R.A., Price W.E. & Carver J.A. 2005. Casein proteins as molecular chaperones. J. Agric. Food. Chem. 53: 2670–2683.

    Article  PubMed  CAS  Google Scholar 

  • Papp E. & Csermely P. 2006. Mechanisms of action and potential use chemical chaperones. Handb. Exp. Pharmacol. 172: 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen L.K. Hojrup P. & Petersen T.E. 1992. The multimeric structure and disulfide-bonding pattern of bovine κ-casein. Eur. J. Biochem. 207: 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Scatchard G., Hamer W.J. & Wood S.E. 1938. The chemical potential of water in aqueous solutions of sodium chloride, potassium chloride, sulfuric acid, sucrose, urea, and glycerol at 25. J. Am. Chem. Soc. 60: 3061–3070.

    Article  CAS  Google Scholar 

  • Shiraki K., Kudou M., Fujiwara S., Imanaka T. & Takagi M. 2002. Biophysical effect of amino acids on the prevention of protein aggregation. J. Biochem. 132: 591–595.

    Article  PubMed  CAS  Google Scholar 

  • Shiraki K., Kudou M., Nishikori S., Kitagawa H., Imanaka T. & Takagi M. 2004. Arginine ethylester prevents thermal inactivation and aggregation of lysozyme. Eur. J. Biochem. 271: 3242–3247.

    Article  PubMed  CAS  Google Scholar 

  • Sinanoglu O. & Abdulnur S. 1965. Effect of water and other solvents on the structure of biopolymers. Fed. Proc. 24: S12–S23.

    PubMed  CAS  Google Scholar 

  • Swaisgood H.E. 1992. Chemistry of the caseins, pp. 63–110. In: Advanced Dairy Chemistry — 1: Protein; 2nd Edn. Elsevier Applied Science, London.

    Google Scholar 

  • Thorn C.D., Ecroyd H., Sunde M., Poon S. & Carver J.A. 2008. Amyloid fibril formation by bovine milk αs2-casein occurs under physiological conditions yet is prevented by its natural counterpart, αs1-casein. Biochemistry 47: 3926–3936.

    Article  PubMed  CAS  Google Scholar 

  • Thorn D.C., Meehan S., Sunde M., Rekas A., Gras S.L., MacPhee C.E., Dobson C.M., Wilson M.R. & Carver J.A. 2005. Amyloid fibril formation by bovine milk κ-casein and its inhibition by the molecular chaperones αS- and β-casein. Biochemistry 44: 17027–17036.

    Article  PubMed  CAS  Google Scholar 

  • Timasheff S.N. 1993. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22: 67–97.

    Article  PubMed  CAS  Google Scholar 

  • Treweek T.M., Thorn D.C., Price W.E. & Carver J.A. 2011. The chaperone action of bovine milk αS1- and αS2-caseins and their associated form αS-casein. Arch. Biochem. Biophys. 510: 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Uversky V.N. & Fink A.L. 2004. Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim. Biophys. Acta 1698: 131–153.

    Article  PubMed  CAS  Google Scholar 

  • Walsta P. & Jenness R. 1984. Dairy Chemistry and Physics. John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Wang W. 2005. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm. 289: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Yancey P.H. & Somero G.N. 1980. Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J. Exp. Zool. 212: 205–213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezou Ghahghaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghahghaei, A., Neyestani, M. Comparison of the chaperon activity of glycerol and α-casein on amyloid formation of κ-casein in the presence of glycine and arginine. Biologia 68, 779–787 (2013). https://doi.org/10.2478/s11756-013-0238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0238-7

Key words

Navigation