Skip to main content
Log in

Isolation and characterization of a novel α-amylase from a metagenomic library of Western Ghats of Kerala, India

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

In the present study, metagenomic library of Western Ghats soil sample was constructed in a fosmid vector (pCC1FOS) and screened for biocatalytic properties. The clones showed amylolytic activity on Luria-Bertani starch agar plates and one of them was studied in detail. The enzyme exhibited stability at elevated temperature with 60°C being the optimal temperature. The enzyme retained more than 30% activity after 60 min incubation at 80°C. It also showed more than 70% activity retention in 1.5 M NaCl solution. The pH optimum of the enzyme was at pH = 5.0. The enzyme possesses good activity in the presence of chelating and strong reducing agents with activity enhancements or retention being observed at 5 mM β-mercaptoethanol, dithiothreitol and N-bromosuccinimide. However, almost complete loss of activity was observed with 5 mM EDTA, while activity enhancement was observed upon incubation with Ca2+ suggesting it to be a Ca2+-dependent α-amylase, which was further confirmed by a thin-layer chromatography (TLC). The TLC run revealed that digestion pattern was similar to commercial α-amylase. The 16S rRNA gene sequence (GenBank accession number HQ680979) BLAST showed 95% similarities with Exiguobacterium sp. AFB-11 and AFB 18, with query sequence coverage of 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFU:

colony forming unit

DTT:

dithiothreitol

LB:

Luria-Bertani

NBS:

N-bromosuccinimide

TLC:

thin layer chromatography

References

  • Atichokudomchai N., Jane J. & Hazlewood G. 2006. Reaction pattern of a novel thermostable α-amylase. Carbohydr. Polym. 64: 582–588.

    Article  CAS  Google Scholar 

  • Beja O., Suzuki M.T., Koonin E.V., Aravind L., Hadd A. & Nguyen L.P. 2000. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2: 516–529.

    Article  PubMed  CAS  Google Scholar 

  • Bilderback D.E. 1973. A simple method to differentiante between α and β amylase. Plant Physiol. 51: 594–595.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S., Khopade A., Kokare C., Mahadik K. & Chopade B. 2009. Isolation and characterization of novel α-amylase from marine Streptomyces sp. 1. J. Mol. Catal. B-Enzym. 58: 17–23.

    Article  CAS  Google Scholar 

  • DeSantis G., Zhu Z., Greenberg W.A., Wong K., Chaplin J., Hanson S.R., Farwell B., Nicholson L.W., Rand C.L., Weiner D.P., Robertson D.E. & Burk M.J. 2002. An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J. Am. Chem. Soc. 124: 9024–9025.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Arrojo L., Guazzaroni M., Lopez-Cortes N., Beloqui A. & Ferrer M. 2010. Metagenomic era for biocatalyst identification. Curr. Opin. Biotechnol. 21: 725–733.

    Article  PubMed  CAS  Google Scholar 

  • Henne A., Schmitz R.A., Bömeke M., Gottschalk G & Daniel R. 2000. SScreening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66: 3113–3116.

    Article  PubMed  CAS  Google Scholar 

  • Hugenholz P., Goebel B.M. & Pace N.R. 1998. Impact of cultureindependent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765–4774.

    Google Scholar 

  • Igarashi K., Hatada Y., Hagihara H., Saeki K., Takaiwa M. & Uemura T. 1998. Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl. Environ. Microbiol. 64: 3282–3289.

    PubMed  CAS  Google Scholar 

  • JunGang L., KeGui Z. & WenJun H. 2010. Cloning and biochemical characterization of a novel lipolytic enzyme from the activated sludge metagenome, and its gene product. Microb. Cell Fact. 9: 83.

    Article  PubMed  Google Scholar 

  • Kawaminami S., Ozaki K., Sumitomo N., Hayashi Y., Ito S. & Shimada I.A. 1994. Stable isotope-aided NMR study of the active site of an endoglucanase from a strain of Bacillus. J. Biol. Chem. 269: 28752–28756.

    PubMed  CAS  Google Scholar 

  • Kielak A.M., van Veen J.A. & Kowalchuk G.A. 2010. Comparative analysis of acidobacterial genomic fragments from terrestrial and aquatic metagenomic libraries, with emphasis on Acidobacteria subdivision. Appl. Environ. Microbiol. 76: 6769–6777.

    Article  PubMed  CAS  Google Scholar 

  • Kim S.J., Lee C.M., Han B.R., Kim M.Y., Yeo Y.S. & Yoon S.H. 2008. Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol. Lett. 282: 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Kiran K.K. & Chandra T.S. 2008. Production of surfactant and detergent-stable, halophilic, and alkalitolerant α-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl. Microbiol. Biotechnol. 77: 1023–1031.

    Article  PubMed  CAS  Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–429.

    Article  CAS  Google Scholar 

  • Monteiro de Souza P. & de Oliveirae e Magalhaes P.2010. Application of microbial α amylases in industry — a review. Braz. J. Microbiol. 41: 850–861.

    CAS  Google Scholar 

  • Okolo B.N., Ezeogu L.I. & Mba C.N. 1995. Production of raw starch digesting amylase by Aspergillus niger grown on native starch sources. J. Sci. Food Agric. 69: 109–115.

    Article  CAS  Google Scholar 

  • Pandey A., Nigam P., Soccol C.R., Singh D., Soccol V.T. & Mohan R. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135–152.

    Article  PubMed  CAS  Google Scholar 

  • Pang H., Zhang P., Duan C.J., Mo X.C., Tang J.L. & Feng J.X. 2009. Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr. Microbiol. 58: 404–408.

    Article  PubMed  CAS  Google Scholar 

  • Ranjan R., Grover A., Kapardar R.K. & Sharma R. 2005. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem. Biophys. Res. Commun. 335: 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Rao J. & Satyanarayana T. 2007. Purification and characterization of a hyperthermostable and high maltogenic α-amylase of an extreme thermophile Geobacillus thermoleovorans. Appl. Biochem. Biotechnol. 142: 179–193.

    Article  CAS  Google Scholar 

  • Rhee J.K., Ahn D.G., Kim Y.G. & Oh J.W. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71: 817–825.

    Article  PubMed  CAS  Google Scholar 

  • Richardson T.H., Tan X., Frey G., Callen W., Cabell M. & Lam D. 2002. A novel, high performance enzyme for starch liquefaction discovery and optimization of a low pH, thermostable α-amylase. J. Biol. Chem. 277: 26501–26507.

    Article  PubMed  CAS  Google Scholar 

  • Rondon M.R., August P.R., Bettermann A.D., Brady S.F., Grossman T.H. & Liles M.R. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541–2547.

    Article  PubMed  CAS  Google Scholar 

  • Sharma S., Khan F.G. & Qazi G.N. 2010. Molecular cloning and characterization of amylase from soil metagenomic library derived from North-Western Himalayas. Appl. Microbiol. Biotechnol. 86: 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  • Singh A., Chauhan N.S., Thulasiram H.V., Taneja V. & Sharma R. 2010. Identification of two flavin monooxygenases from an effluent treatment plant sludge metagenomic library. Bioresource Technol. 101: 8481–8484.

    Article  CAS  Google Scholar 

  • van der Maarel, M.J.E.C., van der Veen B., Uitdehaag, J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137–155.

    Article  PubMed  Google Scholar 

  • Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D. & Eisen J.A. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74.

    Article  PubMed  CAS  Google Scholar 

  • Yun J., Kang S., Park S., Yoon H., Kim M.J. & Heu S. 2004. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl. Environ. Microbiol. 70: 7229–7235.

    Article  PubMed  CAS  Google Scholar 

  • Yun J. & Ryu S. 2005. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb. Cell Fact. 4: 8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidya, J., Swaroop, S., Singh, S.K. et al. Isolation and characterization of a novel α-amylase from a metagenomic library of Western Ghats of Kerala, India. Biologia 66, 939–944 (2011). https://doi.org/10.2478/s11756-011-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0126-y

Key words

Navigation