Skip to main content
Log in

Expression and characterization of an α-glucosidase from Thermoanaerobacter ethanolicus JW200 with potential for industrial application

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

In this study, a new α-glucosidase gene from Thermoanaerobacter ethanolicus JW200 was cloned and expressed in Escherichia coli by a novel heat-shock vector pHsh. The recombinant α-glucosidase exhibited its maximum hydrolytic activity at 70°C and pH 5.0∼5.5. With p-nitrophenyl-α-D-glucoside as a substrate and under the optimal condition (70°C, pH 5.5), K m and V max of the enzyme was 1.72 mM and 39 U/mg, respectively. The purified α-glucosidase could hydrolyze oligosaccharides with both α-1,4 and α-1,6 linkages. The enzyme also had strong transglycosylation activity when maltose was used as sugar donor. The transglucosylation products towards maltose are isomaltose, maltotriose, panose, isomaltotriose and tetrasaccharides. The enzyme could convert 400 g/L maltose to oligosaccharides with a conversion rate of 52%, and 83% of the oligosaccharides formed were prebiotic isomaltooligosaccharides (containing isomaltose, panose and isomaltotriose).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

pNP:

p-nitrophenol

pNPG:

p-nitrophenyl-α-D-glucoside

References

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2009. GenBank. Nucleic Acids Res. 37: D26–D31.

    Article  CAS  PubMed  Google Scholar 

  • Chiba S. 1997. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotech. Biochem. 61: 1233–1239.

    Article  CAS  Google Scholar 

  • Chung C.H. 2006. Production of glucooligosaccharides and mannitol from Leuconostoc mesenteroides B-742 fermentation and its separation from byproducts. J. Microbiol. Biotechnol. 16: 325–329.

    CAS  Google Scholar 

  • Crittenden R.G. & Playne M.J. 1996. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353–361.

    Article  CAS  Google Scholar 

  • Duan K.J., Sheu D.C. & Lin C.T. 1995. Transglucosylation of a fungal α-glucosidase — the enzyme properties and correlation of isomaltooligosaccharide production. Ann. N. Y. Acad. Sci. 750: 325–328.

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M., Golyshina O.V., Plou F.J., Timmis K.N. & Golyshin P.N. 2005. A novel α-glucosidase from the acidophilic archaeon Ferroplasma acidiphilum strain Y with high transglycosylation activity and an unusual catalytic nucleophile. Biochem. J. 391: 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Giannesi G.C., Polizeli M.D., Terenzi H.F. & Jorge J.A. 2006. A novel α-glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: purification and partial characterisation of the enzyme. Process Biochem. 41: 1729–1735.

    Article  CAS  Google Scholar 

  • Hasler C.M. 1996. Functional foods: the western perspective. Nutr. Rev. 54: S6–10.

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarity. Biochem. J. 280: 309–316.

    CAS  PubMed  Google Scholar 

  • Hung V.S., Hatada Y., Goda S. & Lu J. 2005. α-Glucosidase from a strain of deep-sea Geobacillus: a potential enzyme for the biosynthesis of complex carbohydrates. Appl. Microbiol. Biotechnol. 68: 757–765.

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa Y., Look G.C., Wong C.H. & Kajimoto T. 1992. Synthesis of oligosaccharides using glycosyltransferases. J. Syn. Org. Chem. Jpn. 50: 441–450.

    CAS  Google Scholar 

  • Kobayashi I., Tokuda M., Hashimoto H., Konda T., Nakano H. & Kitahata S. 2003. Purification and characterization of a new type of α-glucosidase from Paecilomyces lilacinus that has transglucosylation activity to produce α-1,3- and α-1,2-linked oligosaccharides. Biosci. Biotech. Biochem. 67: 29–35.

    Article  CAS  Google Scholar 

  • Lucia F.A., Dolores M., De Segura A.G., Dolores L., Miguel A. & Patricia G.A. 2007. Transformation of maltose into prebiotic isomaltooligosaccharides by a novel α-glucosidase from Xantophyllomyces dendrorhous. Process Biochem. 42: 1530–1536.

    Article  CAS  Google Scholar 

  • Mala S., Dvorakova H., Hrabal R. & Kralova B. 1999. Towards regioselective synthesis of oligosaccharides by use of α-glucosidases with different substrate-specificity. Carbohydr. Res. 322: 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Murase H., Yamauchi R., Kato K., Kunieda T. & Terao J. 1997. Synthesis of a novel vitamin E derivative, 2-(α-D-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol, by α-glucosidase-catalyzed transglycosylation. Lipids 32: 73–78.

    Article  CAS  PubMed  Google Scholar 

  • Olano-Martin E., Mountzouris K.C., Gibson G.R. & Rastall R.A. 2000. In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. Br. J. Nutr. 83: 247–255.

    CAS  PubMed  Google Scholar 

  • Prodanovic R., Milosavic N., Sladic D., Zlatovic M., Bozic B. & Velickovic T.C. 2005. Transglucosylation of hydroquinone catalysed by alpha-glucosidase from baker’s yeast. J. Mol. Catal. B. Enzymatic 35: 142–146.

    Article  CAS  Google Scholar 

  • Remaut E., Stanssens P. & Fiers W. 1981. Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene 15: 81–93.

    Article  CAS  PubMed  Google Scholar 

  • Shao W., Wu H. & Pei J. 2006. A plasmid vector controlled by the σ32 factor of Escherichia coli and its use for the expression of heterologous protein. International Patent; PCT WO2006/002574A1.

  • Wiegel J., Carriera L.H., Mothershed C.P. & Ljungdahl L.G. 1983. Production of ethanol from biopolymers by anaerobic, thermophilic and extreme thermophilic bacteria. II. Thermoanaerobacter ethanolicus JW200 and its mutants in batch cultures and resting cell experiments. Biotechnol. Bioeng. Symp. 13: 193–205.

    CAS  Google Scholar 

  • Wiegel J. & Ljungdahl L.G. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch. Microbiol. 128: 343–348.

    Article  CAS  Google Scholar 

  • Wu H., Pei J., Wu G. & Shao W. 2008. Overexpression of GH10 endoxylanase XynB from Thermotoga maritima in Escherichia coli by a novel vector with potential for industrial application. Enzyme. Microb. Technol. 42: 230–234.

    Article  CAS  Google Scholar 

  • Yin E., Le Y., Pei J., Shao W. and Yang Q. 2008. High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli. World. J. Microbiol. Biotechnol. 24: 275–280.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Zhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Jiang, Y., Duan, ZY. et al. Expression and characterization of an α-glucosidase from Thermoanaerobacter ethanolicus JW200 with potential for industrial application. Biologia 64, 1053–1057 (2009). https://doi.org/10.2478/s11756-009-0197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0197-1

Key words

Navigation