Skip to main content
Log in

Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

An Indonesian marine bacterial isolate, which belongs to genus of Bacillus sp. based on 16S rDNA analysis and was identified as Bacillus filicolonicus according to its morphology and physiology, produced a raw starch degrading α-amylase. The partially purified α-amylase using a maize starch affinity method exhibited an optimum pH and temperature of 6.0 and 60°C, respectively. The enzyme retained 72% of its activity in the presence of 1.5 M NaCl. Scanning electron micrographs showed that the α-amylase was capable of degrading starch granules of rice and maize. This α-amylase from Bacillus sp. ALSHL3 was classified as a saccharifying enzyme since its major final degradation product was glucose, maltose, and maltotriose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DNSA:

dinitrosalicylic acid

MB:

marine broth

SBD:

starch-binding domain

References

  • Abe A., Tonozuka T., Sakano Y. & Kamitori S. 2004. Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 335: 811–822.

    Article  CAS  PubMed  Google Scholar 

  • Asgher M., Asad M.J., Rahman S.U. & Legge R.L. 2007. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950–955.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan R.E., Gibbons N.E., Cowan S.T., Holt J.G., Liston J., Muray R.G.E., Niven C.F., Ravin A.W. & Stanier R.W. 1974. Bergey’s Manual of Determinative Bacteriology, 8th Edition. The Williams and Wilkins Company, Baltimore.

    Google Scholar 

  • Cho H.Y., Kim Y.W., Kim T.J., Lee H.S., Kim D.Y., Kim J.W., Lee Y.W., Lee S.B. & Park K.H. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta. 1478: 333–340.

    CAS  PubMed  Google Scholar 

  • Demirkan E.S., Mikami B., Adachi M., Higasa T., Utsumi S. 2005. α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochem. 40: 2629–2636.

    Article  CAS  Google Scholar 

  • Fuwa H. 1954. A new method for microdetermination of amylase activity by the use of amylose as a substrate. J. Biochem. 21: 219–230.

    Google Scholar 

  • Gupta R., Gigras P., Mohapatra H., Goswami V.K. & Chauhan B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599–1616.

    Article  CAS  Google Scholar 

  • Hamilton L.M., Kelly C.T. & Fogarty W.M. 1998. Raw starch degradation by the non-raw starch-adsorbing bacterial α-amylase of Bacillus sp. IMD 434. Carbohydr. Res. 314: 251–257.

    Article  CAS  Google Scholar 

  • Hayashida S., Teramoto Y. & Inoue T. 1988. Production and characteristics of raw potato starch digesting amylase from Bacillus subtilis 65. Appl. Environ. Microbiol. 54: 1516–1522.

    CAS  PubMed  Google Scholar 

  • Ivanova V., Dobreva E. & Emanuilova E. 1993. Purification and characterization of thermostable α-amylase from Bacillus licheniformis. J. Biotechnol. 28: 277–289.

    Article  CAS  Google Scholar 

  • Janecek S. & Sevcik J. 1999. The evolution of starch-binding domain. FEBS Lett. 456: 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Kiran K.K. & Chandra T. S. 2008. Production of surfactant and detergent-stable, halophilic, and alkalitolerant α-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl. Microbiol. Biotechnol. 77: 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature227: 680–68

    Article  CAS  PubMed  Google Scholar 

  • Lo H.F., Lin L.L., Chiang W.Y., Chie M.C., Hsu W.H. & Chang C.T. 2002. Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch. Microbiol. 178: 115–123.

    Article  CAS  PubMed  Google Scholar 

  • MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20.

    CAS  PubMed  Google Scholar 

  • Machovic M. & Janecek S. 2006. The evolution of putative starch binding domains. FEBS Lett. 580: 6349–6356.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra R., Noorvez S.M. & Satyanarayana T. 2000. Production and partial characterization of thermostable and calcium independent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31: 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426 428.

    Google Scholar 

  • Mohapatra B.R., Banerjee U.C. & Bapuji M. 1998. Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J. Biotechnol. 60: 113–117.

    Article  CAS  Google Scholar 

  • Najafi M.F., Deobagkar D. & Deobagkar D. 2005. Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Expr. Purif. 41: 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Najafi M.F. & Kembhavi A. 2005. One step purification and characterization of an extracellular amylase from marine Vibrio sp. Enzyme Microb. Technol. 36: 535–539.

    Article  CAS  Google Scholar 

  • Robyt J.F. 1998. Essentials of Carbohydrate Chemistry. Springer, Boston, 399 pp.

    Google Scholar 

  • Sodhi H.K., Sharma K., Gupta J.K. & Soni S.K. 2005. Production of a thermostable amylase by solid-state fermentation and its synergistic use in the hydrolysis of malt strarch for alcohol production. Process Biochem. 40: 525–534.

    Article  CAS  Google Scholar 

  • Van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and application of starch converting enzymes of the amylase family. J. Biotechnol. 94: 137–155.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dessy Natalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidilaseris, K., Hidayat, K., Retnoningrum, D.S. et al. Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3. Biologia 64, 1047–1052 (2009). https://doi.org/10.2478/s11756-009-0190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0190-8

Key words

Navigation