Skip to main content
Log in

Galactoglucomannan oligosaccharides inhibition of elongation growth is in pea epicotyls coupled with peroxidase activity

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The effect of galactoglucomannan oligosaccharides — GGMOs, GGMOs-r (GGMOs with reduced reducing ends), and GGMOs-g (GGMOs with reduced number of d-galactose units) on peroxidase activity was determined in pea epicotyls. GGMOs didn’t significantly modify the activity of soluble peroxidases. However, cell wall-associated peroxidases activity increased after GGMOs and GGMOs-r treatment, while in the presence of GGMOs-g this activity was significantly lower. These results are inversely related to the GGMOs, GGMOs-r, and GGMOs-g effect on elongation growth induced by 2,4-D (2,4-dichlorophenoxyacetic acid) in pea epicotyls. It can be concluded that GGMOs evoked inhibition of the elongation growth induced by auxin is probably associated with cell wall modifications catalysed by peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

d.p.:

degree of polymerisation

GGMOs:

galactoglucomannan oligosaccharides

GGMOs-g:

galactoglucomannan oligosaccharides with reduced number of d-galactose units

GGMOs-r:

galactoglucomannan oligosaccharides with reduced reducing ends

References

  • Auxtová O., Liškovákoniová D., Kubačkovácsonyi Š. & Bilisics L. 1995. Effect of galactoglucomannanderived oligosaccharides on elongation growth of pea and spruce stem segments stimulated by auxin. Planta 196: 420–424.

    Article  Google Scholar 

  • Bagatharia S.B. & Chanda S.V. 1998. Changes in peroxidase and IAA oxidase activities during cell elongation in Phaseolus hypocotyls. Acta Physiol. Plant. 20: 9–13.

    Article  CAS  Google Scholar 

  • Bilisics L. & Kubačková M. 1989. Biosynthesis of water-soluble metabolites of UDP-D-galactose containing D-galactose by an enzymic preparation isolated from tissue culture of poplar (Populus alba L., var. pyramidalis). Collect. Czech. Chem. Commun. 54: 819–833.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analys. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  • Capek P., Kubačková M., Alföldi J., Bilisics L., Lišková D. & Kákoniová D. 2000. Galactoglucomannan from the secondary cell wall of Picea abies L. Karst. Carbohydr. Res. 329: 635–645.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y.A., Shin J.W., Liu Z.H. 2002. Effect of light on peroxidase and lignin synthesis in mungbean hypocotyls. Plant Physiol. Biochem. 40: 33–39.

    Article  CAS  Google Scholar 

  • Christensen J.H., Overney S., Rohde A., Diaz W.A., Bauw G., Simon P., van Montagu M. & Boerjan W. 2001. The syringaldazine-oxidizing peroxidase PXP 3–4 from poplar xylem: cDNA isolation, characterization and expression. Plant Mol. Biol. 47: 581–593.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D.J. 2001. Wall structure and wall loosening. A look backwards and forwards. Plant Physiol. 125: 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Dunand C., De Meyer M., Crèvecoeur M. & Penel C. 1998. Expression of a peroxidase gene in zucchini in relation with hypocotyl growth. Plant Physiol. Biochem. 41: 805–811.

    Article  CAS  Google Scholar 

  • Faivre-Rampant O., Kevers C., Bellini C. & Gaspar T. 1998. Peroxidase activity, ethylene production, lignification and growth limitation in shoots of a nonrooting mutant of tobacco. Plant Physiol. Biochem. 36: 873–877.

    Article  CAS  Google Scholar 

  • Frič F. & Fuchs W.H. 1970. Veränderungen der Aktivität einiger Enzyme im Weizenblatt in Abhängigkeit von der temperaturlabilen Verträglichkeit für Puccinia graminis tritici. Phytopath. Z. 67: 161–174.

    Article  Google Scholar 

  • Jackson P.A.P., Galinha C.I.R., Pereira C.S., Fortunato A., Soares N.C., Amancio S.B.Q. & Pinto Ricardo C.P. 2001. Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalysed by a 40-kilodalton peroxidase. Plant Physiol. 127: 1065–1076.

    Article  PubMed  CAS  Google Scholar 

  • Kaku T., Tabuchi A., Wakabayashi K. & Hoson T. 2004. Xyloglucan oligosaccharides cause cell wall loosening by enhancing xyloglucan endotransglucosylase/hydrolase activity in azuki bean epicotyls. Plant Cell Physiol. 45: 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Khairullin R.M., Akhmetova I.E. & Yusupova Z.R. 2002. Inhibition of IAA-induced growth of wheat coleoptile fragments by chitin-chitosan oligomers. Biol. Bullet. 29: 135–138.

    Article  CAS  Google Scholar 

  • Kollárová K., Liškov Capek P. 2006. Further biological characteristics of galactoglucomannan oligosaccharides. Biol. Plant. 50: 232–258.

    Article  Google Scholar 

  • Quiroga M., Guerrero C., Botella M.A., Barceló A., Amaya I., Medina M.I., Alonso F.J., Forchetti S.M., Tigier H. & Valpuesta V. 2000. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 122: 1119–1128.

    Article  PubMed  CAS  Google Scholar 

  • Passardi F., Cosio C., Penel C. & Dunand C. 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 24: 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Reisfeld R.A., Lewis U.J. & Williams D.E. 1962. Disc electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195: 281–283.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki S., Baba K., Nishida T., Tsutsumi Y. & Kondo R. 2006. The cationic cell-wall-peroxidase having oxidation ability for polymeric substrate participates in the late stage of lignification of Populus alba L. Plant Mol. Biol. 62: 797–807.

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P. 2001. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J. 28: 679–688.

    Article  PubMed  CAS  Google Scholar 

  • Tamás L., Huttová J. & Mistrík I. 2003. Inhibition of Al-induced root elongation and enhancement of Al-induced peroxidase activity in Al-sensitive and Al-resistant barley cultivars are positively correlated. Plant Soil 250: 193–200.

    Article  Google Scholar 

  • Wallace G. & Fry S.C. 1999. Action of diverse peroxidases and laccases on six cell wall-related phenolic compounds. Phytochemistry 52: 769–773.

    Article  CAS  Google Scholar 

  • Warneck H., Haug T. & Seitz H.U. 1996. Activation of cell wall-associated peroxidase isoenzymes in pea epicotyls by a xyloglucan-derived nonasaccharide. J. Exp. Bot. 47: 1897–1904.

    Article  CAS  Google Scholar 

  • Yusupova Z.R., Akhmetova I.E., Khairullin R.M. & Maksimov I.V. 2005. The effect of chitooligosaccharides on hydrogen peroxide production and anionic peroxidase activity in wheat coleoptiles. Russ. J. Plant Physiol. 52: 209–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Kollárová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollárová, K., Slováková, Ľ., Kollerová, E. et al. Galactoglucomannan oligosaccharides inhibition of elongation growth is in pea epicotyls coupled with peroxidase activity. Biologia 64, 919–922 (2009). https://doi.org/10.2478/s11756-009-0159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0159-7

Key words

Navigation