Skip to main content
Log in

Involvement of cysteine 306 and alanine 63 in the thermostability and oligomeric organization of glucose isomerase from Streptomyces sp. SK

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The implication of the original alanine 63 (Ala63) and the unique cysteine 306 (Cys306) residues in the thermostability of the Streptomyces sp. SK glucose isomerase (SKGI) were investigated by site-directed mutagenesis and homology modelling. The Cys306 to Ala mutation within SKGI dramatically affected its thermal stability by decreasing the half-life from 80 to 15 min at 90°C while the Ala63 to Ser replacement shifted this half-life to 65 min. The electrophoretic analysis proves that the residue Cys306 participates in oligomerization of the SKGI. Its stabilizing role is materialized by hydrogen bonds established with arginines at positions 284 and 259, as deduced from the constructed three-dimensional model. We have also shown that the presence of an Ala63 instead of Ser63 seems to be more suitable for enzyme thermostability by maintaining hydrophobic pocket that contributes to the protection of the enzyme active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GI:

glucose isomerase

SKGI:

Streptomyces sp. SK glucose isomerase

WT:

wild-type

References

  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Asbóth B. & Naray-Szabó G. 2000. Mechanism of action of D-xylose isomerase. Curr. Protein Pept. Sci. 1: 237–254.

    Article  PubMed  Google Scholar 

  • Belguith S.K. & Bejar S. 1998. A thermostable glucose isomerase having a relatively low optimum pH: study of activity and molecular cloning of the corresponding gene. Biotechnol. Lett. 20: 553–556.

    Article  Google Scholar 

  • Belguith S.K., Ellouze R. & Bejar S. 2002. Polypeptides having glucose isomerase activity and amino acids encoding the same. US Patent No: 6, 372, 476.

  • Bentley I.S. & Williams E.C. 1996. Starch conversion, pp. 339–357. In: Godfrey T. & West S.I., (eds), Industrial Enzymology, Stockton Press, New York.

    Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2009. GenBank. Nucleic Acids Res. 37 (Database Issue): D26–D31.

    Article  CAS  Google Scholar 

  • Bhosale S.H., Rao M.B. & Deshpande V.V. 1996. Molecular and industrial aspects of glucose isomerase. Microbiol. Rev. 60: 280–300.

    PubMed  CAS  Google Scholar 

  • Borgi M.A., Belguith S.K., Ben Ali M., Mezghani M., Tranier S., Haser R. & Bejar S. 2004. Glucose isomerase of the Streptomyces sp. SK strain: purification, sequence analysis and implication of alanine 103 residue in the enzyme thermostability and acidotolerance. Biochimie 86: 561–568.

    Article  PubMed  CAS  Google Scholar 

  • Borgi M.A., Rhimi M. & Bejar S. 2007. Involvement of alanine 103 residue in kinetic and physicochemical properties of glucose isomerases from Streptomyces species. Biotechnol. J. 2: 254–259.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Caniuguira A., Cabrera R., Baez M., Vasquez C.C., Babula J. & Guixéa V. 2005. Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 from Escherichia coli. FEBS Lett. 579: 2313–2318.

    Article  Google Scholar 

  • Combet C., Jambon M., Deleage G. & Geourjon C. 2002. Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18: 213–214.

    Article  PubMed  CAS  Google Scholar 

  • Chang C., Park B.C., Lee D.S. & Suh S.W. 1999. Crystal structures of thermostable xylose isomerases from Thermus caldophilus and Thermus thermophilus: possible structural determinants of thermostability. J. Mol. Biol. 288: 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Daniel R.M., Dines M. & Petach H.H. 1996. The denaturation and degradation of stable enzymes at high temperatures. Biochem. J. 317: 1–11.

    PubMed  CAS  Google Scholar 

  • Danson M.J. & Hough D.W. 1998. Structure, function and stability of enzymes from the archaea. Trends Microbiol. 6: 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Dische Z. & Borenfreund E. 1951. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J. Biol. Chem. 192: 583–587.

    PubMed  CAS  Google Scholar 

  • Epting K.L., Vieille C., Zeikus G.J. & Kelly R.M. 2005. Influence of divalent cations on the structural thermostability and thermal inactivation kinetics of class II xylose isomerases FEBS J. 272: 1454–1464.

    Article  PubMed  CAS  Google Scholar 

  • Hartley B.S., Hanlon N., Robin J.J. & Rangarajan M. 2000. Glucose isomerase: insights into protein engineering for increased thermostability. Biochim. Biophys. Acta 1543: 294–335.

    PubMed  CAS  Google Scholar 

  • Jenkins J., Janin J., Rey F., Chiadmi M., van Tilbeurgh H., Lasters I., De Maeyer M., Van Belle D., Wodak S.J., Lauwereys M., Stanssens P., Mrabet N.T., Snawaert J., Matthyssens G. & Lambeir A.M. 1992. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry 31: 5449–5458.

    Article  PubMed  CAS  Google Scholar 

  • Karimaki J., Parkkinen T., Santa H., Pastinen O., Leisola M., Rouvinen J. & Turunen O. 2004. Engineering the substrate specificity of xylose isomerase. Protein Eng. 17: 861–869.

    Article  Google Scholar 

  • Katz A.K., Li X., Carrell H.L., Hanson B.L., Langan P., Coates L., Schoenborn B.P., Glusker J.P. & Bunick G.J. 2006. Locating active-site hydrogen atoms in D-xylose isomerase: time-of-flight neutron diffraction. Proc. Natl. Acad. Sci. USA 103: 8342–8347.

    Article  PubMed  CAS  Google Scholar 

  • Ladenstein R. & Antranikian G. 1998. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv. Biochem. Eng. Biotechnol. 61: 37–85.

    PubMed  CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lebbink J.H.G., Kengen S.W.M., Van der Oost J. & De Vos W.M. 1999. Glutamate dehydrogenase from hyperthermophilic bacteria and archaea: determinants of thermostability and catalysis at extremely high temperatures. J.Mol. Catal. B: Enzym. 7: 133–145.

    Article  CAS  Google Scholar 

  • Li Y., Yang X., Chang M., Yager J.D., van Breemen R.B. & Bolton J.L. 2005. Functional and structural comparisons of cysteine residues in the Val108 wild type and Met108 variant of human soluble catechol O-methyltransferase. Chem. Biol. Interact. 152: 151–163.

    Article  PubMed  CAS  Google Scholar 

  • Meng M., Bagdasarian M. & Zeikus J.G. 1993. Thermal stabilization of xylose isomerase from Thermoanaerobacterium thermosulfurigenes. Bio/Technology 11: 1157–1161.

    CAS  Google Scholar 

  • Nordberg Karlsson E., Labes A., Turner P., Fridjonsson O.H., Wennerberg C., Pozzo T., Hreggvidson G.O., Kristjansson J.K. & Schönheit P. 2008. Differences and similarities in enzymes from the neopullulanase subfamily isolated from thermophilic species. Biologia 63: 1006–1014.

    Article  CAS  Google Scholar 

  • Petsko G.A. 2001. Structural basis of thermostability in hyperthermophilic proteins, or ‘there’s more than one way to skin a cat. Methods Enzymol. 334: 469–478.

    Article  PubMed  CAS  Google Scholar 

  • Quax W.J., Mrabet N.T., Luiten R.G.M., Schuurhuizen P.W., Stanssens P. & Lasters I. 1991. Enhancing the thermostability of glucose isomerase by protein engineering. Bio/Technology 9: 738–742.

    Article  PubMed  CAS  Google Scholar 

  • Rhimi M. & Bejar S. 2006. Cloning, purification and biochemical characterization of metallic-ions independent and thermoactive L-arabinose isomerase from the Bacillus stearothermophilus US100 strain. Biochim. Biophys. Acta. 1760: 191–199.

    PubMed  CAS  Google Scholar 

  • Roussel A. & Cambillau C. 1992. Architecture et fonction des macromolecules biologiques. Biographics, Marseille, France.

    Google Scholar 

  • Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Segura L.G., García R.V., Pińera E.R., Jiménez C.M., Rosario A. & Clares M. 2005. Site-directed mutagenesis and homology modeling indicate an important role of cysteine 439 in the stability of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. Biochimie 87: 1056–1064.

    Article  Google Scholar 

  • Takasaki Y., Kosugi Y. & Kanbayashi A. 1969. Studies on sugarisomerizing enzyme: purification, crystallization, and some properties of glucose isomerase from Streptomyces sp. Agric. Biol. Chem. 33: 1527–1534.

    CAS  Google Scholar 

  • Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Vieille C., Hess J.M., Kelly R.M., Zeikus J.G. 1995. xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana. Appl. Environ. Microbiol. 61: 1867–1875.

    PubMed  CAS  Google Scholar 

  • Vieille C. & Zeikus G.J. 2001. Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1–43.

    Article  PubMed  CAS  Google Scholar 

  • Zhu G.P., Xu C., Teng M.K., Tao L.M., Zhu X.Y., Wu C.J., Hang J., Niu L.W. & Wang Y.Z. 1999. Increasing the thermostability of D-xylose isomerase by introduction of a proline into a turn of a random coil. Protein Eng. 12: 635–638.

    Article  PubMed  CAS  Google Scholar 

  • Xu W., Yan M., Xu L., Ding L. & Ouyang P. 2009. Engineering the activity of thermophilic xylose isomerase by site-directed mutation at subunit interfaces. Enzyme Microb. Technol. 44: 77–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Bejar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgi, M.A., Rhimi, M., Aghajari, N. et al. Involvement of cysteine 306 and alanine 63 in the thermostability and oligomeric organization of glucose isomerase from Streptomyces sp. SK. Biologia 64, 845–851 (2009). https://doi.org/10.2478/s11756-009-0155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0155-y

Key words

Navigation