Skip to main content
Log in

Soil nutrient heterogeneity and competitive ability of three grass species (Festuca ovina, Arrhenatherum elatius and Calamagrostis epigejos) in experimental conditions

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

We studied the effects of differences in root growth and nutrient pool on the competitive ability of Festuca ovina (short grass), Arrhenatherum elatius and Calamagrostis epigejos (tall grasses) grown in monocultures and in mixtures of homogeneous and heterogeneous environments during two growing seasons. Analysis of variance revealed a significant effect of plant species on nutrient concentrations in above-ground biomass and of substrate type on contents of N, K, Ca, Mg in biomass. The ANOVA also confirmed the significant effect of competitive environment on the concentration of N, K in above-ground biomass. In heterogeneous environments, both tall grasses (in competition with F. ovina) were able to produce more roots in the nutrient-rich patches and to accumulate more nitrogen in plant tissues, which was associated with higher yield of their above-ground biomass. Thus, the relative competitive ability for nutrients of both tall grasses was higher than that of F. ovina. This competitive ability of A. elatius to C. epigejos increased in heterogeneous treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts R. 1989. The effect of increased nutrient availability on leaf turnover and aboveground productivity of two evergreen ericaceous shrubs. Oecologia 78: 115–120.

    Article  Google Scholar 

  • Berendse F. 1994. Competition between plant populations at low and high nutrient supplies. Oikos 71: 253–260.

    Article  Google Scholar 

  • Berendse F., Oudhof H. & Bol J. 1987. A comparative study on nutrient cycling in wet heathland ecosystems. I. Litter production and nutrient losses from the plant. Oecologia 74: 174–184.

    Article  Google Scholar 

  • Berendse F. & Elberse W.T. 1989. Competition and nutrient losses from the plant, pp. 269–284. In: Lambers H. et al. (eds), Causes and consequences of variation in growth rate and productivity of higher plants, The Hague.

  • Blair B. 2001. Effect of soil nutrient heterogeneity on the symmetry of belowground competition. Plant Ecol. 156: 199–203.

    Article  Google Scholar 

  • Cahill J.F. & Casper B.B. 2000. Investigating the relationship between neighbour root biomass and belowground competition: field evidence for symmetric competition belowground. Oikos 90: 311–320.

    Article  Google Scholar 

  • Cheplick G.P. & Chui T. 2001. Effect of competitive stress on vegetative growth, storage, and regrowth after defoliation in Phleum pratense. Oikos 95: 291–299.

    Article  Google Scholar 

  • de Kroon H. & Hutchings M.J. 1995. Morphological plasticity in clonal plants: the foraging concept recognisered. J. Ecol. 83: 143–152.

    Article  Google Scholar 

  • Diemer M., Körner C. & Prock S. 1992. Leaf life spans in wild perennial herbaceous plants: a survey and attempts at a functional interpretation. Oecologia 89: 10–16.

    Article  Google Scholar 

  • Dolečková J. & Osbornová J. 1990. Competition aability and plasticity of Calamagrostis epigejos. Zpr. Čs. Bot. Společ. 25: 35–38.

    Google Scholar 

  • Einsmann J.C., Jones R.H., Pu M. & Mitchell R.J. 1999. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J. Ecol. 87: 609–619.

    Article  Google Scholar 

  • Farley R.A. & Fitter A.H. 1999. The response of 7 co-occurring herbaceous perennials to localized nutrient-rich patches. J. Ecol. 87: 849–859.

    Article  Google Scholar 

  • Fiala K. 2001. The role of root system of Calamagrostis epigejos in its successful expansion in alluvial meadows. Ekológia, Bratislava, 20: 292–300.

    Google Scholar 

  • Fiala K., Holub P., Sedláková I., Tůma I., Záhora J. & Tesařová M. 2003. Reasons and consequences of expansion of Calamagrostis epigejos in alluvial meadows of landscape affected by water control measures — A multidisciplinary research. Ekológia, Bratislava, 22(Suppl. 2): 242–252.

    Google Scholar 

  • Fiala K., Záhora J., Tůma I. & Holub P. 2004. Importance of plant matter accumulation, nitrogen uptake and utilization in expansion of tall grasses (Calamagrostis epigejos and Arrhenatherum elatius into acidophilous dry grassland. Ekológia, Bratislava, 23: 225–240.

    Google Scholar 

  • Fransen B. & de Kroon H. 2001. Long-term disadvantages of selective root placement: root proliferation and shoot biomass of two perennial grass species in a 2-year experiment. J. Ecol. 89: 711–722.

    Article  Google Scholar 

  • Fransen B., de Kroon H. & Berendse F. 1998. Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability. Oecologia 115: 351–358.

    Article  Google Scholar 

  • Fransen B., de Kroon H. & Berendse F. 2001. Soil nutrient heterogeneity alters competition between two perennial grass species. Ecology 82: 2534–2548.

    Article  Google Scholar 

  • Fraser L.H. & Grime J.P. 1998. Top-down control and its effect on the biomass and composition of three grasses at high and low soil fertility in outdoor microcosms. Oecologia 113: 239–246.

    Article  Google Scholar 

  • Gross K.L., Peters A. & Pregitzer K.S. 1993. Fine root growth and demographic responses to nutrient patches in four old-field plant species. Oecologia 95: 61–64.

    Google Scholar 

  • Gupta P.L. & Rorison I.H. 1975. Seasonal differences in the availability of nutrients down a podzolic profile. J. Ecol. 63: 521–534.

    Article  CAS  Google Scholar 

  • Holub P. 2003. Nitrogen use efficiency and dominance of Calamagrostis epigejos in floodplain meadows. Ekológia, Bratislava, 21(Suppl.): 268–274.

    Google Scholar 

  • Humphrey L.D. & Pyke D.A. 1998. Demographic and growth responses of guerrilla and a phalanx perennial grass in competitive mixtures. J. Ecol. 86: 854–865.

    Article  Google Scholar 

  • Jackson R.B. & Caldwell M.M. 1993. The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology 74: 612–614.

    Article  Google Scholar 

  • Jackson R.B. & Caldwell M.M. 1996. Integrating resource heterogeneity and plant plasticity: modelling nitrate and phosphate uptake in a patchy soil environment. J. Ecol. 84: 891–903.

    Article  Google Scholar 

  • Jánczyk-Weglarska J. 1996. The strategy of Calamagrostis epigejos (L.)Roth individual development under ecological conditions of the valley ravine of the river Warta near Poznán. Seria Biologia 56, Universytet A. Mickiewicza, Poznán.

    Google Scholar 

  • Jastrow J.D. & Miller R.M. 1993. Neighbour influences on root morphology and mycorrhizal fungus colonization in tallgrass prairie plants. Ecology 74: 561–569.

    Article  Google Scholar 

  • Krannitz P.G. & Caldwell M.M. 1995. Root growth responses of three Great Basin perennials to intra- and interspecific contact with other roots. Flora 190: 161–166.

    Google Scholar 

  • Lechowicz M.J. & Bel L.G. 1991. The ecology and genetics of fitness in forest plants. II. Microspatial heterogeneity of the edaphic environment. J. Ecol. 79: 687–696.

    Article  Google Scholar 

  • Mahall B.E. & Callaway R.M. 1992. Root communication mechanisms and intracommunity distributions of two Mojave Desert shrubs. Ecology 73: 2145–2151.

    Article  Google Scholar 

  • Newberry D. & Newman E. 1978. Competition between grassland plants of different size. Oecologia 33: 361–380.

    Article  Google Scholar 

  • Pfitzenmeyer C.D. 1962. Arrhenatherum elatius (L.) J. & C. Presl. J. Ecol. 50: 235–245.

    Article  Google Scholar 

  • Prach K. & Pyšek P. 1994. Clonal plants — what is their role in succession? Folia Geobot. Phytotax. 29: 307–320.

    Article  Google Scholar 

  • Rebele F. 2000. Competition and coexistence of rhizomatous perennial plants along a nutrient gradient. Plant Ecol. 147: 77–94

    Article  Google Scholar 

  • Rebele F. & Lehmann C. 2001: Biological flora of Central Europe: Calamagrostis epigejos (L.) Roth. Flora 196: 325–34

    Google Scholar 

  • Ryel R.J. & Caldwell M.M. 1998. Nutrient acquisition from soils with patchy nutrient distribution assessed with simulation models. Ecology 79: 2735–2744.

    Google Scholar 

  • Schläpfer B. & Ryser P. 1996. Leaf and root turnover of three ecologically contrasting grass species in relation to their performance along a productivity gradient. Oikos 75: 398–406.

    Article  Google Scholar 

  • Sedláková I. & Fiala K. 2001. Ecological problems of degradation of alluvial meadows due to expanding Calamagrostis epigejos. Ekológia, Bratislava, 20(Suppl. 3): 226–233.

    Google Scholar 

  • Silvertown J.W. 1982. Introduction to plant population ecology. London and New York, 209 pp.

  • Šmilauerová M. 2001. Plant root response to heterogeneity of soil resources: effects of nutrient patches, AM symbiosis, and species composition. Folia Geobot. 36: 337–351.

    Article  Google Scholar 

  • Süss K., Storm C., Zehm A. & Schwabe A. 2004. Succession in inland sand ecosystems: Which factors determine the occurrence of the tall grass species Calamagrostis epigejos (L.) Roth and Stipa capillata L. Plant Biol. 6: 465–476.

    Article  PubMed  Google Scholar 

  • ten Harkel M.J. & van der Meulen F. 1996. Impact of grazing and atmospheric nitrogen deposition on the vegetation of dry coastal dune grasslands. J. Veg. Sci. 7: 445–452

    Article  Google Scholar 

  • Tůma I., Holub P. & Fiala K. 2005. Competitive balance and nitrogen losses from three grass species (Arrhenatherum elatius, Calamagrostis epigejos, Festuca ovina). Biológia 60: 1–6.

    Google Scholar 

  • Warren J., Wilson F. & Diaz A. 2002. Competitive relationships in a fertile grassland community — does size matter? Oecologia 132: 125–130.

    Article  Google Scholar 

  • Weiner J., Wright D. & Castro S. 1997. Symmetry of belowground competition between Kochia scoparis individuals. Oikos 79: 85–91.

    Article  Google Scholar 

  • Wijesinghe D. & Hutchings M. 1997. The effects of spatial scale of environmental heterogeneity on the growth of clonal plant: an experimental study with Glechoma hederacea. J. Ecol. 85: 17–28.

    Article  Google Scholar 

  • Wijesinghe D.K., John E.A., Beurskens S. & Hutchings M.J. 2001. Root system size and precision in nutrient foraging: responses to spatial pattern of nutrient supply in six herbaceous species. J. Ecol. 89: 972–983.

    Article  Google Scholar 

  • Wijesinghe D.K., John E.A. & Hutchings M.J. 2005. Does pattern of soil resource heterogeneity determine plant community structure? An experimental investigation. J. Ecol. 93: 99–112.

    Article  Google Scholar 

  • Wilson M.V. & Clark D.L. 2001. Controlling invasive Arrhenatherum elatius and promoting native prairie grasses through mowing. Appl. Veg. Sci. 4: 129–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Tůma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tůma, I., Holub, P. & Fiala, K. Soil nutrient heterogeneity and competitive ability of three grass species (Festuca ovina, Arrhenatherum elatius and Calamagrostis epigejos) in experimental conditions. Biologia 64, 694–704 (2009). https://doi.org/10.2478/s11756-009-0067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0067-x

Key words

Navigation