Skip to main content

Advertisement

Log in

A random process may control the number of endemic species

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The richness of endemic species is often recognized as an indication of the distinctiveness of certain local faunas and is used for the definition of conservation hotspots as well. Faunas of different animal taxa were considered in sets of contiguous geographical units. Comparing the faunas of different units in one set, we found an exponential increase in the number of endemics when plotted against the number of non-endemics. A model of independent stochastic population dynamics under the control of environmental oscillations produces random fluctuations in the ranges of species. Ranges of endemic species are supposedly narrower than ranges of co-occurring non-endemic species. In such a case, the flow of a random process leads to an exponential relationship between numbers of co-occurring endemic and non-endemic species. This process also produces an apparent positive correlation between total species number and the percentage of endemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson S. 1994. Area and Endemism. Q. Rev. Biol. 69: 451–471.

    Article  Google Scholar 

  • Bishop Museum 2002. http://www2.bishopmuseum.org/HBS/checklist/query.asp?grp=Arthropoda (accessed 10.10.2006)

  • Böhning-Gaese K., Caprano T., van Ewijk K. & Veith M. 2006. Range size: Disentangling current traits and phylogenetic and biogeographic factors. Am. Nat. 167: 555–567. DOI 10.1086/501078

    Article  PubMed  Google Scholar 

  • Chikatunov V., Pavlíček T. & Nevo E. 1999. Coleoptera of “Evolution Canyon”, Lower Nahal Oren, Mt. Carmel, Israel. Part I. Pentsoft, 174 pp.

    Google Scholar 

  • Chikatunov V., Pavlíček T. & Nevo E. 2004. Coleoptera of “Evolution Canyon”, Lower Nahal Oren, Mt. Carmel, Israel. Part II. Pentsoft, 192 pp.

    Google Scholar 

  • Coad B.W. & Vilenkin B.Ya. 2004. Co-occurrence and zoogeography of the freshwater fishes of Iran. Zool. Middle East 31:53–61.

    Google Scholar 

  • Cox D.R. & Smith W.L. 1971. Queues. 2nd ed. Chapman and Hall, London, 180 pp.

    Google Scholar 

  • Emerson B.C. & Kolm N. 2005. Species diversity can drive speciation. Nature 434: 1015–1017. DOI 10.1038/nature03450

    Article  PubMed  CAS  Google Scholar 

  • Furth D.G. 1979. Zoogeography and host plant ecology of the Alticinae of Israel, especially Phyllotreta; with descriptions of three new species (Coleoptera: Chrysomelidae). Israel J. Zool. 28: 1–37.

    Google Scholar 

  • Gaston K.J. 2000. Global patterns in biodiversity. Nature 405: 220–227. DOI 10.1038/35012228

    Article  PubMed  CAS  Google Scholar 

  • Gaston K.J. & Blackburn T.M. 2002. Large-scale dynamics in colonization and extinction for breeding birds in Britain. J. Anim. Ecol. 71: 390–399. DOI 10.1046/j.1365-2656.2002.00607.x

    Article  Google Scholar 

  • Graves G.R. & Rahbek C. 2005. Source pool geometry and the assembly of continental avifaunas. Proc. Nat. Acad. Sci. USA 102: 7871–7876. DOI 10.1073/pnas.0500424102

    Article  PubMed  CAS  Google Scholar 

  • Hubbell S.P. 2001. A Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, N.J., 448 pp.

    Google Scholar 

  • Laffan S.W. & Crisp M.D. 2003. Assessing endemism as multiple spatial scales, with an example from the Australian vascular flora. J. Biogeogr. 30: 511–520.

    Article  Google Scholar 

  • Lamoureux J.F., Morrison J.C, Ricketts T.H., Olson D.M., Dinerstein E., et al. 2006. Global tests of biodiversity concordance and importance of endemism. Nature 440: 212–214.

    Article  CAS  Google Scholar 

  • Magurran A.E. & Henderson P.A. 2003. Explaining the excess of rare species in natural species abundance distributions. Nature 422: 714–716.

    Article  PubMed  CAS  Google Scholar 

  • Mayr E. 1972. Geography and ecology as faunal determinant, pp. 549–591. In: Proc. XVth International Ornithological Congress, The Hague, The Netherlands.

  • McGill B.J. 2003. A test of the unified neutral theory of biodiversity. Nature 422: 881–885.

    Article  PubMed  CAS  Google Scholar 

  • Mina M.V. 1992. Problem of protection of fish faunas in the USSR. Neth. J. Zool. 42: 200–213.

    Article  Google Scholar 

  • Mina M.V. & Golubtsov A.S. 1995. Faunas of isolated regions as principal units in the conservation of freshwater fishes. Am. Fish. Soc. Symp. 17: 145–148.

    Google Scholar 

  • Prendergast J.R., Quinn R.M., Lawton J.H., Eversham B.C. & Gibbons D.W. 1993. Rare species. The coincidence of diversity hotspots and conservation strategies. Nature 365: 335–337.

    Article  Google Scholar 

  • Rodrigues A.S.L. 2006. Are global conservation efforts successful? Science 313: 1051–1052.

    Article  PubMed  Google Scholar 

  • Roman J. 2006. Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc. R. Soc. Lond. B. Biol. Sci. 237: 2453–2459. DOI 10.1098/rspb.2006.3597

    Article  Google Scholar 

  • Sutherst R.W. 2003. Prediction of species geographical range. J. Biogeogr. 30: 805–816. DOI 10.1046/j.1365-2699.2003.00861.x

    Article  Google Scholar 

  • Ulrich W. & Ollik M. 2004. Frequent and occasional species and the shape of relative-abundance distributions. Divers. Distrib. 10: 263–269. DOI 10.1111/j.1366-9516.2004.00082.x

    Article  Google Scholar 

  • Vilenkin B. 2006. Ecological reading of random numbers. Ecol. Model. 195: 385–392. DOI 10.1016/j.ecolmodel.2005.11.038

    Article  Google Scholar 

  • Vilenkin B.Ya. & Chikatunov V.I. 1998. Co-occurrence of species with various geographical ranges, and correlation between area size and number of species in geographical scale. J. Biogeogr. 25: 275–284. DOI 10.1046/j.1365-2699.1998.252193.x

    Article  Google Scholar 

  • Vilenkin B.Ya. & Chikatunov V.I. 2000. Participation of species with different zoogeographical ranks in the formation of local faunas: a case study. J. Biogeogr. 27: 1201–1208. DOI 10.1046/j.1365-2699.2000.00485.x

    Article  Google Scholar 

  • Vilenkin B.Ya. & Schileyko V.I. 1979. [A method of estimation of the level of fauna endemism]. Zool. Zh. 58: 1720–1727. [In Russian]

    Google Scholar 

  • Volkov I., Banavar J.R., Hubbell S.P. & Maritan A. 2007. Patterns of relative species abundance in rainforests and coral reefs. Nature 450: 45–49. DOI 10.1038/nature06197

    Article  PubMed  CAS  Google Scholar 

  • Williamson M. & Gaston K.J. 2005. The lognormal distribution is not an appropriate null hypothesis for the species-abundance distribution. J. Anim. Ecol. 74: 409–422. DOI 10.1111/j.1365-2656.2005.00936.x

    Article  Google Scholar 

  • Wonham M.J. & Pachepsky E. 2006. A null model of temporal trends in biological invasion records. Ecol. Lett. 9: 663–672. DOI 10.1111/j.1461-0248.2006.00913.x

    Article  PubMed  Google Scholar 

  • Wootton J.T. 2005. Field parameterization and experimental test of the neutral theory of biodiversity. Nature 433: 309–312. DOI 10.1038/nature03211

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian W. Coad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilenkin, B.Y., Chikatunov, V.I., Coad, B.W. et al. A random process may control the number of endemic species. Biologia 64, 107–112 (2009). https://doi.org/10.2478/s11756-009-0020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0020-z

Key words

Navigation