Skip to main content
Log in

Melatonin does not affect the black pigment migration in the crab Neohelice granulata

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

N-acetyl-5-methoxytryptamine or melatonin is a multifunctional molecule. The main physiological function, at least in vertebrates, is to transduce to the animal the photoperiodic information and regulate rhythmic parameters. But studies have also observed the action of this molecule on pigment migration in ectothermic vertebrates. Thus the aim of this paper was to investigate in vivo and in vitro the influence of melatonin on the pigment migration in melanophores of the crab Neohelice granulate. Injections of melatonin (2 × 10−9 moles · crab−1) at 07:00 h or 19:00 h did not affect (p > 0.05) the circadian pigment migration of the melanophores in constant darkness. Additionally no significant pigment migration (p > 0.05) was verified in normal and eyestalkless crabs injected with melatonin (10−10–10−7 moles · crab−1) during the day or night. In the in vitro assay, the response of melanophores to the pigment-dispersing hormone in eyestalkless crabs injected with melatonin (2 × 10−9 moles · crab−1) 1 and 12 hours before the observations did not differ (p > 0.05) from the control group (injected with physiological solution). These results suggest that melatonin does not act as a signaling factor for pigment dispersion or aggregation in the melanophores of N. Granulate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCAP:

crustacean cardioactive peptide

DRC:

dose response curve

DD:

constant darkness

MCH:

melaninconcentrating hormone

α-MSH:

α-melanocyte-stimulating hormone

β-PDH:

β-pigment dispersion hormone

RPCH:

red-pigment-concentrating hormone

References

  • Balzer I., Espínola I.R. & Fuentes-Pardo B. 1997. Daily variations of immunoreactive melatonin in the visual system of crayfish. Biol. Cell 89: 539–543.

    Article  CAS  Google Scholar 

  • Binkley S. 1988. Other functions of the pineal and melatonin, pp. 128–155. In: Binkley S. (ed.), The Pineal: Endocrine and Non-Endocrine Functions, Prentice Hall Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Binkley S., Mosher K., Rubin F. & White B. 1988. Xenopus tadpoles melanophores are controlled by dark and light and melatonin without influence of time of day. J. Pineal Res. 5: 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Binkley S., Reilly K., Hermida V. & Mosher K. 1987. Circadian rhythm of color change in Anolis carolinensis: reconsideration of regulation, especially the role of melatonin in dark-time pallor. Pineal Res. Rev. 5: 133–151.

    CAS  Google Scholar 

  • Britto A.L.M., Castrucci A.M.L., Visconti M.A. & Josefsson L. 1990. Quantitative in vitro assay for crustacean chromatophorotropins and other pigment cell agonist. Pigment Cell Res. 3: 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Camargo C.R., Visconti M.A. & Castrucci A.M.L. 1999. Physiological color change in the bullfrog, Rana catesbeiana. J. Exp. Zool. 283: 160–169.

    Article  PubMed  CAS  Google Scholar 

  • Castrucci A.M.L., Hadley M.E. & Hruby V.J. 1984. Melanotropin bioassays: in vivo and in vitro comparisons. Gen. Comp. Endocrinol. 55: 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Filadelfi A.M.C. & Castrucci A.M.L. 1994. Melatonin desensitizing effects on the in vitro responses to MCH, α-MSH, isoproterenol and melatonin in pigment cells of a fish (S. marmoratus), a toad (B. ictericus), a frog (R. pipiens), and a lizard (A. carolinensis), exposed to varying photoperiodic regimens. Comp. Biochem. Physiol. 109A: 1027–1037.

    Article  CAS  Google Scholar 

  • Filadelfi A.M.C. & Castrucci A.M.L. 1996. Comparative aspects of the pineal/melatonin system of poikilothermic vertebrates. J. Pineal Res. 20: 175–186.

    Article  PubMed  CAS  Google Scholar 

  • Fingerman M. 1955. Persistent daily and tidal rhythms of color change in Callinectes sapidus. Biol. Bull. 109: 255–264.

    Article  Google Scholar 

  • Fujii R. 1961. Demonstration of the adrenergic nature of transmission at the junction between melanophore-concentrating nerve and melanophore in bony fish. J. Fac. Sci. Univ. Tokyo IV 9: 171–196.

    Google Scholar 

  • Fujii R. 2000. The regulation of motile activity in fish chromatophores. Pigment Cell Res. 13: 300–319.

    Article  PubMed  CAS  Google Scholar 

  • Fujji R. & Oshima N. 1986. Control of chromatophore movements in teleost fishes. Zool. Sci. 3: 13–47.

    Google Scholar 

  • Fujii R. & Oshima N. 1994. Factors influencing motile activities of fish chromathophores, pp. 1–54. In Arpigny J.L. (ed.), Advances in Comparative and Environmental Physiology, Vol. 20, Springer-Verlag, Berlin.

    Google Scholar 

  • Fujii R., Tanaka Y. & Hayashi H. 1993. Endothelin-1 causes aggregation of pigment in teleostean melanophores. Zool. Sci. 10: 763–772.

    CAS  Google Scholar 

  • Granato F.C., Tironi T.S., Maciel F.E., Rosa C.E., Vargas M.A. & Nery L.E.M. 2004. Circadian rhythm of pigment migration induced by chromatrophorotropins in melanophores of the crab Chasmagnathus granulata. Comp. Biochem. Physiol. 138A: 313–319.

    CAS  Google Scholar 

  • Hogben L. & Slome D. 1931. The pigmentary effector system: IV. The dual character of endocrine co-ordination in amphibian color change. Proc. R. Soc. Lond. 108B: 10–53.

    Google Scholar 

  • Hruby V.J., Wilkes B.C., Hadley M.E., Al-Obeidi F.A., Sawyer T.K., Staples D.J., De Vaux A.E., Dym O., Castrucci A.M.L., Hintz F., Riehm J.P. & Rao K.R. 1987. α-Melanotropin: the minimal activity sequence in the frog skin bioassay. J. Med. Chem. 30: 2126–2130.

    Article  PubMed  CAS  Google Scholar 

  • Josefsson L. 1975. Structure and function of crustacean chromatophorotropins. Gen. Comp. Endocrinol. 25: 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Kavaliers M., Firth B.T. & Ralph C.L. 1980. Pineal control of the circadian rhythm of color change in the killifish (Fundulus heteroclitus). Can. J. Zool. 58: 456–460.

    Article  Google Scholar 

  • Lerner A.B., Case J.D., Takahashi Y., Lee T.H. & Mori W. 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Amer. Chem. Soc. 80: 1587–1587.

    Article  Google Scholar 

  • Lutterschimidt D.I., Lutterschimidt W.I. & Hutchison V.H. 2003. Melatonin and thermoregulation in ectothermic vertebrates: a review. Can. J. Zool. 81: 1–13.

    Article  Google Scholar 

  • Märtensson L.G.E. & Andersson R.G.G. 1996. A melatonin binding site modulates the α2-adrenoceptor. Life Sci. 58: 525–533.

    Article  PubMed  Google Scholar 

  • Mayer I., Bornestaf C. & Borg B. 1997. Melatonin in nonmammalian vertebrates: physiological role in reproduction? Comp. Biochem. Physiol. 118A: 515–531.

    Article  CAS  Google Scholar 

  • Nery L.E.M., Silva M.A. & Castrucci A.M.L. 1999. Possible role of nonclassical chromatophorotropins on the regulation of the crustacean erythrophore. J. Exp. Zool. 284: 711–716.

    Article  PubMed  CAS  Google Scholar 

  • Powell B.L. 1962a. Chromatophorotropins in the central nervous system of Carcinus maenas. Crustaceana 4: 143–150.

    Article  Google Scholar 

  • Powell B.L. 1962b. Types, distribution and rhythmical behaviour of the chromatophores of juvenile Carcinus maenas. J. Anim. Ecol. 31: 251–261.

    Article  Google Scholar 

  • Powell B.L. 1966. The control of the 24 hour rhythm of color change in juvenile Carcinus maenas. Proc. Royal Irish. Acad. 64B: 379–399.

    Google Scholar 

  • Rao K.R. 2001. Crustacean pigmentary-effector hormones: chemistry and functions of RPCH, PDH, and related peptides. Amer. Zool. 41: 364–379.

    Article  CAS  Google Scholar 

  • Reiter R.J. 1991. Melatonin: the chemical expression of darkness. Mol. Cell. Endocrinol. 79: C153–C158.

    Article  PubMed  CAS  Google Scholar 

  • Rollag M.D., Korf B. & Harrison K. 1989. Characterization of melatonin’s mechanism of action at the cellular level using the amphibian melanophore model system. Adv. Pineal Res. 3: 195–200.

    CAS  Google Scholar 

  • Rollag M.D. & Lynch G.R. 1993. Melatonin-induced desensitization in amphibian melanophores. J. Exp. Zool. 265: 488–495.

    Article  PubMed  CAS  Google Scholar 

  • Sakai K., Turkay M. & Yang S.L. 2006. Revision of the Helice/Chasmagnathus complex. (Crustacea: Decapoda: Brachiura). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 565: 1–76.

    Google Scholar 

  • Shibley G.A. 1968. Eyestalk function in chromatophore control in a crab Cancer magister. Physiol. Zool. 41: 268–279.

    Google Scholar 

  • Skorkowski E.F. & Biegniewska A. 1981. Neurohormones and control of physiological processes in Crustacea. Adv. Physiol. Sci. 23: 419–432.

    CAS  Google Scholar 

  • Thurman C.L. 1988. Rhythmic physiological color change in crustacea: a review. Comp. Biochem. Physiol. 91C: 171–185.

    Google Scholar 

  • Tilden A.R., Alt J., Brummer K., Groth R., Herwig K., Wilson A. & Wilson S. 2001. Influence of photoperiod on N-acetyltransferase activity and melatonin in the fiddler crab Uca pugilator. Gen. Comp. Endocrinol. 122: 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Tilden A.R., Brauch R., Ball R., Janze A.M., Ghaffari A.H., Sweeney C.T., Yurek J.C. & Cooper R.L. 2003. Modulatory effects of melatonin on behavior, hemolymph metabolites, and neurotransmitter release in crayfish. Brain Res. 992: 252–262.

    Article  PubMed  CAS  Google Scholar 

  • Tilden A.R., Rasmussen P., Awantang R.M., Furlan S., Goldstein J., Palsgrove M. & Sauer A. 1997. Melatonin cycle in the fiddler crab Uca pugilator and influence of melatonin on limb regeneration. J. Pineal Res. 23: 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Underwood H. 1981. Circadian organization in the lizard Sceloporus occidentalis: the effects of pinealectomy, blinding and melatonin. J. Comp. Physiol. 141: 537–547.

    CAS  Google Scholar 

  • Visconti M.A. & Castrucci A.M.L. 1993. Melanotropin receptors in the cartilaginous fish, Potamotrygon reticulatus, and in the lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol. 106C: 523–528.

    CAS  Google Scholar 

  • Vivien-Roels B. & Pévet P. 1993. Melatonin: presence and formation in invertebrates. Experientia 49: 642–647.

    Article  CAS  Google Scholar 

  • Yang W.J., Ainda K. & Nagasawa H. 1999. Characterization of chromatophorotropic neuropeptides from the kuruma prawn Penaeus japonicus. Gen. Comp. Endocrinol. 114: 415–424.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio E. Maciel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciel, F.E., Geihs, M.A., Vargas, M.A. et al. Melatonin does not affect the black pigment migration in the crab Neohelice granulata . Biologia 64, 187–191 (2009). https://doi.org/10.2478/s11756-009-0016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0016-8

Key words

Navigation