Skip to main content
Log in

Proteolysis of α-amylase from Saccharomycopsis fibuligera: characterization of digestion products

  • Full Paper
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

α-Amylase from Saccharomycopsis fibuligera R-64 was successfully purified by butyl Toyopearl hydrophobic interaction chromatography, followed by Sephadex G-25 size exclusion and DEAE Toyopearl anion exchange chromatography. The enzyme has a molecular mass of 54 kDa, as judged by SDS PAGE analysis. Upon tryptic digestion, two major fragments with relative molecular masses of 39 kDa and 10 kDa, which resemble the A/B and C-terminal domains in the homologous Taka-amylase, were obtained and were successfully separated with the Sephadex G-50 size exclusion column. The 39-kDa fragment demonstrated a similar amylolytic activity to that of the undigested enzyme. However, it was found that the K m value of the 39-kDa fragment was about two-times higher than that of the undigested enzyme. Moreover, thermostability studies showed a lower half-life time for the 39-kDa fragment. These findings suggest that the 39-kDa fragment is the catalytic domain, while the 10-kDa fragment is the C-terminal one, which plays a role in thermostability and starch binding. Although the undigested enzyme is able to act on raw starches at room temperature, with maize starches as the best substrate, neither the undigested enzyme nor the fragments adsorb the tested raw starches. These results propose Saccharomycopsis fibuligera α-amylase as a raw starch-digesting but not adsorbing amylase, with a similar domain organization to that of Taka-amylase A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GluR:

Saccharomycopsis fibuligera R-64 glucoamylase

p10:

Sfamy proteolytic fragment with molecular mass of 10 kDa

p39:

Sfamy proteolytic fragment with molecular mass of 39 kDa

Sfamy:

Saccharomycopsis fibuligera α-amylase

References

  • Abe A., Tonozuka T., Sakano Y. & Kamitori S. 2004. Complex structures of Thermoactinomyces vulgaricus R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch binding domain. J. Mol. Biol. 335: 811–822.

    Article  PubMed  CAS  Google Scholar 

  • Atschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Google Scholar 

  • Blakesley R.W. & Boezi J.A. 1977. A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G-250. Anal. Biochem. 82: 580–582.

    Article  PubMed  CAS  Google Scholar 

  • Desseaux V., Payan F., Ajandouz E.H., Svensson B., Haser R. & Marchis-Mouren G. 1991. Effect of limited proteolysis in the 8th loop of the barrel and of antibodies on porcine pancreas amylase activity. Biochim. Biophys. Acta 1080: 237–244.

    PubMed  CAS  Google Scholar 

  • Ferey-Roux G., Perrier J., Forest E., Marchis-Mouren G., Puigserver A. & Santimone M. 1998. The human pancreatic α-amylase isoforms: Isolation, structural studies and kinetics of inhibition by acarbose. Biochim. Biophys. Acta 1388: 10–20.

    PubMed  CAS  Google Scholar 

  • Fuwa H. 1954. A new method for microdetermination of amylase activity by the use of amylase as the substrate. J. Biochem. 41: 583–603.

    CAS  Google Scholar 

  • Gilkes N.R., Kilburn D.G., Miller R.C. & Warren R.A.J. 1989. Structural and functional analysis of a bacterial cellulase by proteolysis. J. Biol. Chem. 264: 17802–17808.

    PubMed  CAS  Google Scholar 

  • Hamilton L.M., Kelly C.T. & Fogarty W.M. 1998. Raw starch degradation by the non-adsorbing bacterial α-amylase Bacillus sp. IMD 434. Carbohydrate Res. 314: 251–257.

    Article  CAS  Google Scholar 

  • Hostinova E. 2002. Amylolytic enzymes produced by the yeast Saccharomycopsis fibuligera. Biologia 57(Suppl. 11): 247–251.

    CAS  Google Scholar 

  • Hostinova E., Solovicova A., Dvorsky R. & Gasperik J. 2003. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Arch. Biochem. Biophys. 411: 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Iefuji H., Chino M., Kato M. & Limura Y. 1996. Raw-starch digesting and thermostable α-amylase from yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biochem. J. 318: 989–996.

    PubMed  CAS  Google Scholar 

  • Itoh T., Yamashita I. & Fukui S. 1987. Nucleotide sequence of the α-amylase gene (ALP1) in the yeast Saccharomycopsis fibuligera. FEBS Lett. 29: 339–342.

    Article  Google Scholar 

  • Ismaya W.T., Setiana T., Mulyana B., Natalia D. & Soemitro S. 2001. Stabilization and protein engineering of α-amylase from Saccharomycopsis fibuligera, p. 124. In: Janecek S. (ed.), 1st Symposium on the Alpha-Amylase Family, Programme and Abstracts, Sep 30 — Oct 4, 2001, Smolenice Castle, Slovakia, Asco Arts & Science, Bratislava.

    Google Scholar 

  • Janecek S. & Sevcik J. 1999. The evolution of starch binding domain. FEBS Lett. 456: 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Khajeh K., Shokri M.M., Asghari S.M., Moradian F., Ghasemi A., Sadeghi M., Ranjbar B., Hosseinkhani S., Gharavi S. & Naderi-Manesh H. 2006. Acidic and proteolytic digestion of α-amylases from Bacillus licheniformis and Bacillus amyloliquefaciens: stability and flexibility analysis. Enzyme Microb. Technol. 38: 422–428.

    Article  CAS  Google Scholar 

  • Kim C.H. & Kho Y.H. 1993. Domain structure and multiplicity of raw-starch-digesting-amylase from Bacillus circulans: extensive proteolysis with proteinase K, endopeptidase Glu-C and thermolysin. Biochim. Biphys. Acta 1202: 200–206.

    CAS  Google Scholar 

  • Kim Y.W., Choi J.H., Kim J.W., Park C., Kim J.W., Cha H., Lee S.B., Oh B.H., Moon T.W. & Park K.H. 2003. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Environ. Microbiol. 69: 4886–4874.

    Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Machovic M. & Janecek S. 2006. Starch-binding domains in the post-genome era. Cell. Mol. Life Sci. 63: 2710–2724.

    Article  PubMed  CAS  Google Scholar 

  • Matsui I., Ishikawa K., Miyairi S., Fukui S. & Honda K. 1991. An increase in the transglycosylation activity of Saccharomycopsis α-amylase altered by site-directed mutagenesis. Biochim. Biophys. Acta 1077: 416–419.

    PubMed  CAS  Google Scholar 

  • Matsui I., Ishikawa K., Miyairi S., Fukui S. & Honda K. 1992a. A mutant α-amylase with enhanced activity specific for short substrates. FEBS Lett. 310: 216–218.

    Article  PubMed  CAS  Google Scholar 

  • Matsui I., Ishikawa K., Miyairi S., Fukui S. & Honda K. 1992b. Alteration of bond-cleavage pattern in the hydrolysis catalyzed by Saccharomycopsis α-amylase altered by site-directed mutagenesis. Biochemistry 31: 5232–5236.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, I., Yoneda S., Ishikawa K., Miyairi S., Fukui S., Umeyama H. & Honda K. 1994. Roles of the aromatic residues conserved in the active centre of Saccharomycopsis fibuligera α-amylase for transglycosylation and hydrolysis activity. Biochemistry 33: 189–196.

    Google Scholar 

  • Matsuura Y., Kusunoki M., Harada W. & Kakudo M. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95: 697–702.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Sanoja R., Oviedo N. & Sanchez S. 2005. Microbial starch-binding domain. Curr. Opin. Microbiol. 8: 260–267.

    Article  PubMed  CAS  Google Scholar 

  • Sumitani J.I., Tottori T., Kawaguchi T. & Arai M. 2000. New type of starch binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. No. 195 α-amylase contributes to starch binding and raw starch degrading. Biochem. J. 350: 477–484.

    Article  PubMed  CAS  Google Scholar 

  • Tester R.F., Qi X. & Karkalas J. 2006. Hydrolysis of native starches with amylases. Anim. Feed Sci. Technol. 130: 39–54.

    Article  CAS  Google Scholar 

  • Walker J.A. & Harmon D.L. 1996. Technical note: a simple, rapid assay for α-amylase in bovine pancreatic juice. J. Anim. Sci. 74: 658–662.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khomaini Hasan or Soetijoso Soemitro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, K., Tirta Ismaya, W., Kardi, I. et al. Proteolysis of α-amylase from Saccharomycopsis fibuligera: characterization of digestion products. Biologia 63, 1044–1050 (2008). https://doi.org/10.2478/s11756-008-0167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0167-z

Key words

Navigation