Skip to main content
Log in

Contrast adaptation to time constraints on development of two pre-dispersal predators of dandelion (Taraxacum officinale) seed

  • Full Paper
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Pre-dispersal seed predators of quickly maturing inflorescences of Asteraceae are constrained by shortage of development time. At seed dispersal, they should pupate or, if still immature, relocate into another inflorescence. To investigate how dominant coleopteran predators of dandelion seed, Glocianus punctiger (Curculionidae) and Olibrus bicolor (Phalacridae), cope with time limitation we combined observation (development and temperature of dandelion capitulum, thermal constants of predator development, age structure of larval populations at seed dispersal) and analogy (“rate isomorphy” in predator development, comparing “model” coleopteran species with similar temperature requirements). Development of a dandelion capitulum takes 21 days. The time available to G. punctiger (140–190 day degrees, development threshold 6.3°C) is sufficient to complete development and pupate after seed dispersal. By contrast, only 30–50 day degrees are available to O. bicolor (threshold 13.5°C) and this is not enough to complete development and consequently immature larvae should move to other capitula to continue feeding until pupation. These contrast strategies which are determined by this thermal adaptation, are accompanied by differences in larval morphology. The “cold adapted” G. punctiger has an apodous larva not capable of migrating between capitula while the “warm adapted” O. bicolor has a mobile campodeiform larva capable of migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi I. 1994. Development and life cycle of Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae) on citrus trees under fluctuating and constant temperature regimes. Appl. Entomol. Zool. 29: 485–497.

    Google Scholar 

  • Ali A.W., Wetzel T. & Heyer W. 1977. Ergebnisse von Untersuchungen über die Effektivtemperatursummen einzelner Entwicklungsstadien der Getreidehähnchen (Lema spp.). Arch. Phytophathol. Pfl-Schutz 13: 425–433.

    Google Scholar 

  • Bacheler J.S., Jones J.W., Bradley J.R. & Bowen H.D. 1975. The effect of temperature on development and mortality of boll weevil immature stages. Environ. Entomol. 4: 808–811.

    Google Scholar 

  • BenAzouri A. 1990. Contribution á l’etude du cycle biologique de Phloetribus scarabeoides (Bern) (Col. Scolytidae) dans la region de Taroudant (Maroc). Al Awamia 73: 87–101.

    Google Scholar 

  • Butler G.D. & Ritchie P.L. 1967. The life cycle of Hypera brunneipennis and a parasite, Bathyplectes curculionis, in relation to temperature. J. Econ. Entomol. 60: 1239–1241.

    Google Scholar 

  • Campagna G. & Rapparini G. 2002. Sviluppo di mezzi biologici per il contenimiento delle malerbe. Informatore Agrario 58: 53–58.

    Google Scholar 

  • Chan W.P., Ellsbury M.M. & Baker G.T. 1990. Effects of temperature on preimaginal development of Hypera meles (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 83: 1116–1124.

    Google Scholar 

  • Crawley M.J. 1997. Plant-Herbivore Dynamics, pp. 401–474. In: Crawley, M.J. (ed.), Plant Ecology, 2nd ed., Blackwell, Oxford.

    Google Scholar 

  • DeLoach C.J. & Cordo H.A. 1976. Life cycle and biology of Neochetina brucki, a weevil attacking waterhyacinth in Argentina, with notes on N. eichhorniae. Ann. Entomol. Soc. Am. 69: 643–652.

    Google Scholar 

  • Dixon A.F.G., Jarošík V. & Honěk A. 2005. Thermal requirements for development and resource partitioning in aphidophagous guilds. Eur. J. Entomol. 102: 407–411.

    Google Scholar 

  • Fan Y., Groden E. & Drummond F.A. 1992. Temperature-dependent development of Mexican bean beetle (Coleoptera: Coccinellidae) under constant and variable temeratures. J. Econ. Entomol. 85: 1762–1770.

    Google Scholar 

  • Fenner M., Cresswell J.E. & Hurley R.A. 2002. Relationship between capitulum size and pre-dispersal seed predation by insect larvae in common Asteraceae. Oecologia 130: 72–77.

    Google Scholar 

  • Ferro D.N., Logan J.A., Voss R.H. & Elkinton J.S. 1985. Colorado potato beetle (Coleoptera: Chrysomelidae) temperature-dependent growth and feeding rates. Environ. Entomol. 14: 343–348.

    Google Scholar 

  • Fornasari L. 1995. Temperature effects on the embryonic development Aphtona abdominalis (Coleoptera: Chrysomelidae), a natural enemy of Euphorbia escula (Euphorbiales: Euphorbiaceae). Environ. Entomol. 24: 720–723.

    Google Scholar 

  • Guppy J.C. & Harcourt G.G. 1978. Effects of temperature on development of the immature stages of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae). Can. Entomol. 110: 257–263.

    Google Scholar 

  • Guppy J.C. & Mukerji M.K. 1974. Effects of temperature on developmental rate of the immature stages of the alfalfa weevil, Hypera postica (Coleoptera: Curculionidae). Can. Entomol. 106: 93–100.

    Google Scholar 

  • Honěk A. 1996. The relationship between thermal constants for insect development: a verification. Acta Soc. Zool. Bohem. 60: 115–152.

    Google Scholar 

  • Honěk A. 1999. Constraints on thermal requirements for insect development. Entomol. Sci. 2: 615–621.

    Google Scholar 

  • Honěk A., Jarošik V., Martinková Z. & Novák I. 2002. Food induced variation in thermal constants of development and growth of Autographa gamma (Lepidoptera: Noctuidae) larvae. Eur. J. Entomol. 99: 241–252.

    Google Scholar 

  • Honěk A. & Kocourek F. 1988. Thermal requirements for development of aphidophagous Coccinellidae (Coleoptera), Chrysopidae (Neuroptera), and Syrphidae (Diptera): some general trends. Oecologia 76: 455–460.

    Google Scholar 

  • Honěk A. & Kocourek F. 1990. Temperature and development time in insects: a general relationship between thermal constants. Zool. Jb. Syst. 117: 401–439.

    Google Scholar 

  • Honěk A. & Martinková Z. 2005. Pre-dispersal predation of Taraxacum officinale (dandelion) seed. J. Ecol. 93: 335–344.

    Article  Google Scholar 

  • Honěk A., Martinková Z., Hůrka K. & Štys P. 2005. Insect community in maturing capitula of dandelion (Taraxacum officinale). Biologia 60: 559–565.

    Google Scholar 

  • Hsieh F., Roberts S.J. & Ambrus E.J. 1974. Developmental rate and population of alfalfa weevil larvae. Environ. Entomol. 3: 593–597.

    Google Scholar 

  • Hurpin B. 1956. Influence de la temperature et de l’humidité de sol sur le developpement embryonaire du Hanneton commun (Melolontha melolontha L.). Rev. Pathol. Veg. Entomol. Agric. Fr. 35: 75–92.

    Google Scholar 

  • Hurpin B. 1962. Superfamille des Scarabeoidea, pp. 24–204. In: Balachowsky A.S. (ed.), Entomologie Appliquée a l’Agriculture, Tome 1, Coleoptéres. Mason et Cie, Paris.

    Google Scholar 

  • Jackson C.G. & Elliott N.C. 1988. Temperature-dependent development of immature stages of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ. Entomol. 17: 166–171.

    Google Scholar 

  • James D.G. & Voegele B. 2000. Development and survivorship of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus humeralis (F.) (Coleoptera: Nitidulidae) over a range of constant temperatures. Aust. J. Entomol. 39: 180–184.

    Article  Google Scholar 

  • Jarošik V., Honěk A. & Dixon A.F.G. 2002. Developmental rate isomorphy in insects and mites. Am. Nat. 160: 497–510.

    Article  PubMed  Google Scholar 

  • Julien M.H. & Bourne A.S. 1983. Temperature relations of Perapion antiquum (Col., Curculionidae), a weevil introduced to control the weed Emex australis in Australia. Z. Angew. Entomol. 95: 351–360.

    Google Scholar 

  • King J.E., Price R.G., Young J.H., Willson L.J. & Pinkston K.N. 1985. Influence of temperature on development and survival of the immature stages of the elm leaf beetle, Pyrrhalta luteola (Muller) (Coleoptera: Chrysomelidae). Environ. Entomol. 14: 272–274.

    Google Scholar 

  • Kirschner J., Štěpánek J. & Trávníček B. 2002. Taraxacum Wigg. — pampeliška (smetánka), pp. 686–702. In: Kubat K. (ed.), Klíč ke květeně České republiky [Key to the Flora of the Czech Republic], Academia, Praha.

    Google Scholar 

  • Kwong S. 1980. A rearing method for Sitona humeralis Stephens (Coleoptera: Curculionidae), and its development under controlled conditions. Bull. Entomol. Res. 70: 97–102.

    Google Scholar 

  • Lactin D.J. & Holliday N.J. 1992. Constant-temperature development rates of pre-imaginal Colorado potato beetles (Leptinotarsa decemlineata (Say), Coleoptera: Chrysomelidae) from Manitoba and British Columbia. Proc. Entomol. Soc. Manitoba 48: 1–13.

    Google Scholar 

  • Litsinger J.A. & Apple J.W. 1973. Thermal requirements for embryonic and larval development of the alfalfa weevil in Wisconsin. J. Econ. Entomol. 66: 309–311.

    Google Scholar 

  • Logan J.A., Casagrande R.A., Faubert H.H. & Drummond F.A. 1985. Temperature-dependent development and feeding of immature Colorado potato beetle Lepinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Environ. Entomol. 14: 275–284.

    Google Scholar 

  • Loi G. & Belcari A. 1983. Influenza della temperatura sullo sviluppo degli stadi preimaginali del coleottero crisomelide Chrysomela populi L. Frustula Entomol. N. S. 6: 87–101.

    Google Scholar 

  • Madubunyi L.C. & Koehler C.S. 1974. Effects of photoperiod and temperature development in Hypera brunneipennis. Environ. Entomol. 3: 1017–1021.

    Google Scholar 

  • Martel P., Svec H.J. & Harris C.R. 1976. The life history of the carrot weevil, Listronotus oregonensis (Coleoptera, Curculionidae) under controlled conditions. Can. Entomol. 108: 931–934.

    Google Scholar 

  • McAvoy T.J. & Kok L.T. 1985. Viability and developmental rate of everwintering eggs of Trichosirocalus horridus (Coleoptera: Curculionidae). Environ. Entomol. 14: 285–288.

    Google Scholar 

  • McAvoy T.J., Kok L.T. & Trumble J.T. 1983. Biological studies of Ceutorhynchus punctiger (Coleoptera: Curculionidae) on dandelion in Virginia. Ann. Entomol. Soc. Am. 76: 671–674.

    Google Scholar 

  • Mellors W.K. & Allegro A. 1984. Comparison of constant and alternating temperatures for determining developmental rates of Mexican bean beetle eggs and pupae. Ann. Entomol. Soc. Am. 77: 6–10.

    Google Scholar 

  • Mullen M.A. 1981. Sweetpotato weevil, Cylas formicarius elongatulus (Summers): development, fecundity, and longevity. Ann. Entomol. Soc. Am. 74: 478–481.

    Google Scholar 

  • Nteletsana L., Schoeman A.S. & McGeoch M.A. 2001. Temperature effects on development of the sweetpotato weevil, Cylas puncticollis Boehman (Coleoptera: Apionidae). African Entomol. 9: 49–57.

    Google Scholar 

  • Perdikis D.C., Fantinou A.A. & Lykouressis D.P. 2003. Constant rate allocation in nymphal development in species of Hemiptera. Physiol. Entomol. 28: 331–339.

    Article  Google Scholar 

  • Radde G. 1974. Beobachtungen zur Entwicklung von Rüselkäfern (1). Entomol. Nachr. 18: 44–47.

    Google Scholar 

  • Reitter E. 1912. Fauna Germanica. Vol. 3. KG Lutz Verlag, Stuttgart, 465 pp.

    Google Scholar 

  • Satomura H. 1950. Relations of temperature to the development of the larval and pupal stages of Phyllotreta vittata. Oyo Kontyu 6: 1–9.

    Google Scholar 

  • Schaafsma A.W., Whitfield G.H. & Ellis C.R. 1991. A temperature-dependent model of egg development of the western corn rootworn, Diabrotica virgifera LeConte (Coleoptera: Chrysomelidae). Can. Entomol. 123: 1183–1197.

    Article  Google Scholar 

  • Schroder R.F.W. & Steinhauer A.L. 1976. Effect of photoperiod and temperature regimens of the biologz of European and United States alfalfa weevil populations. Ann. Entomol. Soc. Am. 69: 701–706.

    Google Scholar 

  • Sherrod D.W., White C.E. & Eastman C.E. 1982. Temperature-related development of the imported crucifer weevil, Baris lepidii (Coleoptera: Curculionidae), in the laboratory and field. Environ. Entomol. 11: 897–900.

    Google Scholar 

  • Simonet D.E. & Devenport B.L. 1981. Temperature requirements for development and oviposition of the carrot weevil. Ann. Entomol. Soc. Am. 74: 312–315.

    Google Scholar 

  • Smith L. & Kok L.T. 1985. Influence of temperature on the development and mortality of immature Rhinocyllus conicus (Coleoptera: Curculionidae). Environ. Entomol. 14: 629–633.

    Google Scholar 

  • Stenseth C. 1979. Effects of temperature on development of Otiorrhynchus sulcatus (Coleoptera: Curculionidae). Ann. Appl. Biol. 91: 179–185.

    Article  Google Scholar 

  • Stewart-Wade S.M., Neumann S., Collins L.L. & Boland G.J. 2002. The biology of Canadian wees. 117. Taraxacum officinale G.H. Weber ex Wiggers. Can. J. Plant Sci. 82: 825–853.

    Google Scholar 

  • Sue K., Ferro D.N. & Emberson R.M. 1980. A rearing method for Sitona humeralis Stephens (Coleoptera: Curculionidae) and its development under controlled conditions. Bull. Entomol. Res. 70: 97–102.

    Article  Google Scholar 

  • Tarrant C.A. & McCoy C.W. 1989. Effect of temperature and relative humidity on the egg and larval stages of some citrus root weevils. Florida Entomol. 72: 117–123.

    Article  Google Scholar 

  • Tauber C.A., Tauber M.J., Gollands B., Wright R.J. & Obrycki J. 1988. Preimaginal development and reproductive responses to temperature in two populations of the colorado potato beetle (Coleptera: Chrysomalidae). Ann. Entomol. Soc. Am. 81: 755–763.

    Google Scholar 

  • Taylor R.G. & Harcourt D.G. 1978. Effect of temperature on developmental rate of the immature stages of Crioceris asparagi (Coleoptera: Chrysomelidae). Can. Entomol. 110: 57–62.

    Article  Google Scholar 

  • Trudgill D.L. 1995. Why do tropical poikilothermic organisms tend to have higher threshold temperature for development than temperature ones. Funct. Ecol. 9: 136–137.

    Google Scholar 

  • Trudgill D.L., Honek A., Li D. & Van Straalen N.M. 2005. Thermal time — concepts and utility. Ann. Appl. Biol. 146: 1–14.

    Article  Google Scholar 

  • Tweney J. & Mogie M. 1999. The relationship between achene weight, embryo weight and germination in Taraxacum apomicts. Ann. Bot. 83: 45–50.

    Article  Google Scholar 

  • Uscidda C. & Crovetti A. 1983. Influenza della temperatura sullo sviluppo degli studi preimaginali di Galeruca sardoa (Gene) (Coleoptera Chrysomelidae). Frustula Entomol. N. S. 6: 45–68.

    Google Scholar 

  • Walgenbach J.F. & Wyman J.A. 1984. Colorado potato beetle (Coleoptera: Chrysomalidae) development in relation to temperature in Wisconsin. Ann. Entomol. Soc. Am. 77: 604–609.

    Google Scholar 

  • Ward R.H. & Pienkowiski R.L. 1978. Biology of Cassida rubiginosa, a thirtle-feeding shield beetle. Ann. Entomol. Soc. Am. 71: 585–591.

    Google Scholar 

  • Wightman J.A. 1973. Effect of environment on Costelytra zealandica (Coloptera: Scarabaeidae). 2. Effect of temperature and soil moisture on duration and survival of the egg stage. N. Z. J. Sci. 16: 41–52.

    Google Scholar 

  • Woodson W.D. & Edelson J.V. 1988. Developmental rate as a function of temperature in a carrot weevil, Listronotus texanus (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 81: 252–254.

    Google Scholar 

  • Woodson W.D. & Jackson J.J. 1996. Developmental rate as a function of temperature in northern corn rootworm (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 89: 226–230.

    Google Scholar 

  • Woodson W.D., Jackson J.J. & Ellsbury M.M. 1996. Northern corn rootworm (Coleoptera: Chrysomelidae) temperature requirements for egg development. Ann. Entomol. Soc. Am. 89: 898–903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenka Martinková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinková, Z., Honěk, A. Contrast adaptation to time constraints on development of two pre-dispersal predators of dandelion (Taraxacum officinale) seed. Biologia 63, 418–426 (2008). https://doi.org/10.2478/s11756-008-0055-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0055-6

Key words

Navigation