Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 12, 2014

Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis

  • Wioleta Pietrzak EMAIL logo , Renata Nowak and Marta Olech
From the journal Chemical Papers

Abstract

The total content of polyphenols and flavonoids determined in the same plant and their corresponding antioxidant activities may vary widely, depending on the extraction conditions applied. This study was conducted to optimise the extraction conditions of phenolics and flavonoids from the mistletoe plant. Various extraction methods, i.e. ultrasound-assisted extraction technology, maceration, maceration with stirring, accelerated solvent extraction (ASE), and extraction under reflux were evaluated for their percentage extraction of polyphenols (TPC) and flavonoids (TFC) from Viscum album subsp. abietis. In addition, the anti-radical activity of extracts was analysed using the 2,2-diphenyl-1-picrylhydrazyl method. The effects of temperature, solvent type, and concentration on the phenolic extraction efficiency and antioxidant activity were studied using chemometric and statistical methods. The results showed that the extracts of V. album subsp. abietis contained large amounts of polyphenols and flavonoids (up to 57.673 mg g−1 and 9.955 mg g−1 of dry extract, respectively) and exhibited potent antioxidant activity, hence representing promising sources of powerful antioxidants. Due to its high extraction efficiency and considerable saving of time and solvent, ASE was more effective than the other extraction techniques. Extracts prepared with water-polar solvent mixtures displayed the highest TPC, TFC, and antioxidant activity, while organic polar solvents were the least efficient extractants.

[1] Amabeoku, G. J., Leng, M. J., & Syce, J. A. (1998). Antimicrobial and anticonvulsant activities of Viscum capense. Journal of Ethnopharmacology, 61, 237–241. DOI: 10.1016/s0378-8741(98)00054-3. http://dx.doi.org/10.1016/S0378-8741(98)00054-310.1016/S0378-8741(98)00054-3Search in Google Scholar

[2] Babić, S., Petrović, M., & Kaštelan-Macan, M. (1998). Ultrasonic solvent extraction of pesticides from soil. Journal of Chromatography A, 823, 3–9. DOI: 10.1016/s0021-9673(98)00301-x. http://dx.doi.org/10.1016/S0021-9673(98)00301-X10.1016/S0021-9673(98)00301-XSearch in Google Scholar

[3] Bangoura, M. L., Nsor-Atindana, J., & Ming, Z. H. (2013). Solvent optimization extraction of antioxidants from foxtail millet species’ insoluble fibers and their free radical scavenging properties. Food Chemistry, 141, 736–744. DOI: 10.1016/j.foodchem.2013.03.029. http://dx.doi.org/10.1016/j.foodchem.2013.03.02910.1016/j.foodchem.2013.03.029Search in Google Scholar

[4] Barney, C.W., Hawksworth, F. G., & Geils, B. W. (1998). Hosts of Viscum album. European Journal of Forest Pathology, 28, 187–208. DOI: 10.1111/j.1439-0329.1998.tb01249.x. http://dx.doi.org/10.1111/j.1439-0329.1998.tb01249.x10.1111/j.1439-0329.1998.tb01249.xSearch in Google Scholar

[5] Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT — Food Science and Technology, 28, 25–30. DOI: 10.1016/s0023-6438(95)80008-5. http://dx.doi.org/10.1016/S0023-6438(95)80008-510.1016/S0023-6438(95)80008-5Search in Google Scholar

[6] Deeni, Y. Y., & Sadiq, N. M. (2002). Antimicrobial properties and phytochemical constituents of leaves of African mistletoe (Tapinanthusdodoneifolius (DC) Danser) (Loranthaceae): an ethnomedicinal plant of Hausaland, Northern Nigeria. Journal of Ethnopharmacology, 83, 235–240. DOI: 10.1016/s0378-8741(02)00244-1. http://dx.doi.org/10.1016/S0378-8741(02)00244-110.1016/S0378-8741(02)00244-1Search in Google Scholar

[7] Gorter, R., Khwaja, T. & Linder, M. (1992). Anti-HIV and immunomodulating activities of Viscum album (mistletoe). In Proceedings of the 8th International Conference on AIDS, July 7–24, 1992 (pp. 84). Amsterdam, The Netherlands: International AIDS Society. Search in Google Scholar

[8] Huie, C. W. (2002). A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Analytical and Bioanalytical Chemistry, 373, 23–30. DOI: 10.1007/s00216-002-1265-3. http://dx.doi.org/10.1007/s00216-002-1265-310.1007/s00216-002-1265-3Search in Google Scholar PubMed

[9] Lamaison, J. L. C., & Carnet, A. (1990). Teneurs en principaux flavonoides des fleurs de Cratageus monogyna Jacq et de Cratageus Laevigata (Poiret D.C) en fonction de la vegetation. Pharmaceutica Acta Helvetiae, 65, 315–320. (in French) Search in Google Scholar

[10] Martens, D., Gfrerer, M., Wenzl, T., Zhang, A., Gawlik, B., Schramm, K. W., Lankmayr, E., & Kettrup, A. (2002). Comparison of different extraction techniques for the determination of polychlorinated organic compounds in sediments. Analytical and Bioanalytical Chemistry, 372, 562–568. DOI: 10.1007/s00216-001-1120-y. http://dx.doi.org/10.1007/s00216-001-1120-y10.1007/s00216-001-1120-ySearch in Google Scholar PubMed

[11] Notar, M., & Leskovšek, H. (2000). Determination of polycyclic aromatic hydrocarbons in marine sediments using a new ASE-SFE extraction technique. Fresenius’ Journal of Analytical Chemistry, 366, 846–850. DOI: 10.1007/s002160051583. http://dx.doi.org/10.1007/s00216005158310.1007/s002160051583Search in Google Scholar PubMed

[12] Nowak, R., & Gawlik-Dziki, U. (2007). Polyphenols of Rosa L. leaves extracts and their radical scavenging activity. Zeitschrift für Naturforschung C, A Journal of Biosciences, 62, 32–38. Search in Google Scholar

[13] Olech, M., & Nowak, R. (2012). Influence of different extraction procedures on the antiradical activity and phenolic profile of Rosa rugosa petals. Acta Poloniae Pharmaceutica, 69, 501–507. Search in Google Scholar

[14] Olech, M., Nowak, R., Los, R., Rzymowska, J., Malm, A., & Chrusciel, K. (2012). Biological activity and composition of teas and tinctures prepared from Rosa rugosa Thunb. Central European Journal of Biology, 7, 172–182. DOI: 10.2478/s11535-011-0105-x. http://dx.doi.org/10.2478/s11535-011-0105-x10.2478/s11535-011-0105-xSearch in Google Scholar

[15] Önay-Uçar, E., Karagöz, A., & Arda, N. (2006). Antioxidant activity of Viscum album ssp. album. Fitoterapia, 77, 556–560. DOI: 10.1016/j.fitote.2006.08.001. http://dx.doi.org/10.1016/j.fitote.2006.08.00110.1016/j.fitote.2006.08.001Search in Google Scholar

[16] Orhan, D. D., Aslan, M., Sendogdu, N., Ergun, F., & Yesilada, E. (2005). Evaluation of the hypoglycemic effect and antioxidant activity of three Viscum album subspecies (European mistletoe) in streptozotocin-diabetic rats. Journal of Ethnopharmacology, 98, 95–102. DOI: 10.1016/j.jep.2004.12.033. http://dx.doi.org/10.1016/j.jep.2004.12.03310.1016/j.jep.2004.12.033Search in Google Scholar

[17] Pan, X. J., Niu, G. G., & Liu, H. Z. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification, 42, 129–133. DOI: 10.1016/s0255-2701(02)00037-5. http://dx.doi.org/10.1016/S0255-2701(02)00037-510.1016/S0255-2701(02)00037-5Search in Google Scholar

[18] Şahin, S., Aybastier, Ö., & Iık, E. (2013). Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chemistry, 141, 1361–1368. DOI: 10.1016/j.foodchem.2013.04.003. http://dx.doi.org/10.1016/j.foodchem.2013.04.00310.1016/j.foodchem.2013.04.003Search in Google Scholar PubMed

[19] Sanghi, R., & Kannamkumarath, S. S. (2004). Comparison of extraction methods by Soxhlet, sonicator, and microwave in the screening of pesticide residues from solid matrices. Journal of Analytical Chemistry, 59, 1032–1036. DOI: 10.1023/b:janc.0000047004.71892.0e. http://dx.doi.org/10.1023/B:JANC.0000047004.71892.0e10.1023/B:JANC.0000047004.71892.0eSearch in Google Scholar

[20] Shen, J. C., & Shao, X. G. (2005). A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonicassisted extraction for analysis of terpenoids and sterols in tobacco. Analytical and Bioanalytical Chemistry, 383, 1003–1008. DOI: 10.1007/s00216-005-0078-6. http://dx.doi.org/10.1007/s00216-005-0078-610.1007/s00216-005-0078-6Search in Google Scholar PubMed

[21] Sporring, S., Bowadt, S., Svensmark, B., & Björklund, E. (2005). Comprehensive comparison of classic Soxhlet extraction with Soxtec extraction, ultrasonication extraction, supercritical fluid extraction, microwave assisted extraction and accelerated solvent extraction for the determination of polychlorinated biphenyls in soil. Journal of Chromatography A, 1090, 1–9. DOI: 10.1016/j.chroma.2005.07.008. http://dx.doi.org/10.1016/j.chroma.2005.07.00810.1016/j.chroma.2005.07.008Search in Google Scholar PubMed

[22] Szabo, M. R., Idioiu, C., Chambre, D., & Lupea, A. X. (2007). Improved DPPH determination for antioxidant activity spectrophotometric assay. Chemical Papers, 63, 214–216. DOI: 10.2478/s11696-007-0022-7. http://dx.doi.org/10.2478/s11696-007-0022-710.2478/s11696-007-0022-7Search in Google Scholar

[23] Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., & Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, 266, 37–56. DOI: 10.1023/b:mcbi.0000049134.69131.89. http://dx.doi.org/10.1023/B:MCBI.0000049134.69131.8910.1023/B:MCBI.0000049134.69131.89Search in Google Scholar

[24] Wilga, J., Kot-Wasik, A., & Namieśnik, J. (2007). Comparison of extraction techniques of robenidine from poultry feed samples. Talanta, 73, 812–819. DOI: 10.1016/j.talanta.2007.04. 046. http://dx.doi.org/10.1016/j.talanta.2007.04.04610.1016/j.talanta.2007.04.046Search in Google Scholar PubMed

[25] Zhang, H. F., Yang, X. H., & Wang, Y. (2011). Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends in Food Science & Technology, 22, 672–688. DOI: 10.1016/j.tifs.2011.07.003. http://dx.doi.org/10.1016/j.tifs.2011.07.00310.1016/j.tifs.2011.07.003Search in Google Scholar

[26] Zuber, D. (2004). Biological flora of Central Europe: Viscum album L. Flora — Morphology, Distribution Functional Ecology of Plants, 199, 181–203. DOI: 10.1078/0367-2530-00147. http://dx.doi.org/10.1078/0367-2530-0014710.1078/0367-2530-00147Search in Google Scholar

Published Online: 2014-3-12
Published in Print: 2014-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0524-4/html
Scroll to top button