Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 3, 2013

Effect of compression pressure on mechanical and electrical properties of polyaniline pellets

  • Helena Valentová EMAIL logo , Jan Prokeš , Jan Nedbal and Jaroslav Stejskal
From the journal Chemical Papers

Abstract

While conductivity and other electrical properties are key parameters in the design of polymer electronics, equally important mechanical properties of conducting polymers have rarely been reported. The influence of preparation conditions of polyaniline pellets on mechanical and electrical properties was therefore studied. Conductivity of polyaniline is commonly measured using pellets prepared by the compression of powder. It is shown that a pressure of at least 300 MPa is needed to obtain a reliable value of conductivity. At lower pressures, the samples have lower apparent conductivity, density, Young modulus, and hardness. Above the compression limit of 300 MPa, these parameters become constant, except for the density. The same behavior was observed both for conducting polyaniline hydrochloride and for the non-conducting polyaniline base. The puzzling observation that density of the pellets decreased as the compression pressure increased is discussed considering the relaxation processes.

[1] Adetunji, O. O., Chiou, N. R., & Epstein, A. J. (2009). Effect of pressure on the morphology of polyaniline nanostructures. Synthetic Metals, 159, 2263–2265. DOI: 10.1016/j.synthmet.2009.07.049. http://dx.doi.org/10.1016/j.synthmet.2009.07.04910.1016/j.synthmet.2009.07.049Search in Google Scholar

[2] Crawford, R. J. (1982). Microhardness testing of plastics. Polymer Testing, 3, 37–54. DOI: 10.1016/0142-9418(82)90011-3. http://dx.doi.org/10.1016/0142-9418(82)90011-310.1016/0142-9418(82)90011-3Search in Google Scholar

[3] Deore, B. A., Yu, I., Aguiar, P. M., Recksiedler, C., Kroeker, S., & Freund, M. S. (2005). Highly cross-linked, self-doped polyaniline exhibiting unprecedented hardness. Chemistry of Materials, 17, 3803–3805. DOI: 10.1021/cm0505392. http://dx.doi.org/10.1021/cm050539210.1021/cm0505392Search in Google Scholar

[4] George, S. D., Saravanan, S., Anantharaman, M. R., Venkatachalam, S., Radhakrishnan, P., Nampoori, V. P. N., & Vallabhan, C. P. G. (2004). Thermal characterization of doped polyaniline and its composites with CoPc. Physical Reviews B, 69, 235201. DOI: 10.1103/physrevb.69.235201. http://dx.doi.org/10.1103/PhysRevB.69.23520110.1103/PhysRevB.69.235201Search in Google Scholar

[5] Kang, E. T., Ma, Z. H., Tan, K. L., Tretinnikov, O. N., Uyama, Y., & Ikada, Y. (1999). Surface hardness of pristine and modified polyaniline films. Langmuir, 15, 5389–5395. DOI: 10.1021/la981717r. http://dx.doi.org/10.1021/la981717r10.1021/la981717rSearch in Google Scholar

[6] Krumova, M., Flores, A., Calleja, F. B., & Fakirov, S. (2002). Elastic properties of oriented polymers, blends and reinforced composites using the microindentation technique. Colloid and Polymer Science, 280, 591–598. DOI: 10.1007/s00396-001-0646-z. http://dx.doi.org/10.1007/s00396-001-0646-z10.1007/s00396-001-0646-zSearch in Google Scholar

[7] Pandis, C., Logakis, E., Peoglos, V., Pissis, P., Omastová, M., Mravčáková, M., Janke, A., Pionteck, J., Peneva, Y., & Minkova, L. (2009). Morphology, microhardness, and electrical properties of composites based on polypropylene, montmorillonite, and polypyrrole. Journal of Polymer Science Part B: Polymer Physics, 47, 407–423. DOI: 10.1002/polb.21646. http://dx.doi.org/10.1002/polb.2164610.1002/polb.21646Search in Google Scholar

[8] Skotheim, T. A., & Reynolds, J. R. (2007). Conjugated polymers: Processing and applications (Handbook of Conducting Polymers, 3rd ed.). Boca Raton, FL, USA: CRC Press. Search in Google Scholar

[9] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer. Pure and Applied Chemistry, 74, 857–867. DOI:10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Search in Google Scholar

[10] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI:10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Search in Google Scholar

[11] Valentová, H., & Stejskal, J. (2010). Mechanical properties of polyaniline. Synthetic Metals, 160, 832–834. DOI:10.1016/j.synthmet.2010.01.007. http://dx.doi.org/10.1016/j.synthmet.2010.01.00710.1016/j.synthmet.2010.01.007Search in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0360-6/html
Scroll to top button