Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 16, 2011

An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives

  • Abdelmounaim Safer EMAIL logo , Mustapha Rahmouni , François Carreaux , Ludovic Paquin , Olivier Lozach , Laurent Meijer and Jean Bazureau
From the journal Chemical Papers

Abstract

A series of nine 5-arylidenerhodanine derivatives was prepared in good yields and purity without the use of a solvent or catalyst under microwave-assisted condensation with some substituted isatins. All 5-arylidenerhodanines were evaluated as possible inhibitors of the CK1α/β, CDK5/p25, and GSK-3α/β kinases. None of them showed substantive inhibitory activity against these kinases when evaluated at the concentration of 10 μM.

[1] Andreasch, R. (1917). Über substituierte Rhodanine und einige ihrer Aldehydkondensationsprodukte. XIII. Mitteilung. Monatshefte für Chemie, 38, 121–139. DOI: 10.1007/BF01526473. http://dx.doi.org/10.1007/BF0152647310.1007/BF01526473Search in Google Scholar

[2] Bach, S., Knockaert, M., Reinhardt, J., Lozach, O., Schmitt, S., Baratte, B., Koken, M., Coburn, S. P., Tang, L., Jiang, T., Liang, D.-C., Galons, H., Dierick, J.-F., Pinna, L. A., Meggio, F., Totzke, F., Schächtele, C., Lerman, A. S., Carnero, A., Wan, Y., Gray, N., & Meijer, L. (2005). Roscovitine targets, protein kinases and pyridoxal kinase. Journal of Biological Chemistry, 280, 31208–31219. DOI: 10.1074/jbc.M500806200. http://dx.doi.org/10.1074/jbc.M50080620010.1074/jbc.M500806200Search in Google Scholar PubMed

[3] Bapodra, A. H., Bharmal, F., & Parekh, H. (2002). Synthesis and biological activity of 2-(3′,5′-dibromo-2′-hydroxyphenyl)-3-aryl-5H/methyl/carboxymethyl-4-thiazolidinones. Indian Journal of Pharmaceutical Sciences, 64, 501–504. Search in Google Scholar

[4] Bao, L., & Kimzey, A. (2004). Photochemotherapeutic compounds for use in treatment of Pin1-associated states. WO Patent No. WO2004093803. Geneva, Switzerland: World Intellectual Property Organization. Search in Google Scholar

[5] Blackwell, H. E. (2003). Out of the oil bath and into the oven-microwave-assisted combinatorial chemistry heats up. Organic & Biomolecular Chemistry, 1, 1251–1255. DOI: 10.1039/b301432k. http://dx.doi.org/10.1039/b301432k10.1039/b301432kSearch in Google Scholar PubMed

[6] Bourahla, K., Derdour, A., Rahmouni, M., Carreaux, F., & Bazureau, J. P. (2007). A practical access to novel 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones via sulfur/nitrogen displacement under solvent-free microwave irradiation. Tetrahedron Letters, 48, 5785–5789. DOI: 10.1016/j.tetlet.2007.06.078. http://dx.doi.org/10.1016/j.tetlet.2007.06.07810.1016/j.tetlet.2007.06.078Search in Google Scholar

[7] Brown, F. C. (1961). 4-Thiazolidinones. Chemical Reviews, 61, 463–521. DOI: 10.1021/cr60213a002. http://dx.doi.org/10.1021/cr60213a00210.1021/cr60213a002Search in Google Scholar

[8] Bulic, B., Pickhardt, M., Schmidt, B., Mandelkow, E.-M., Waldmann, H., & Mandelkow, E. (2009). Development of tau aggregation inhibitors for Alzheimer’s disease. Angewandte Chemie International Edition, 48, 1740–1752. DOI: 10.1002/anie.200802621. http://dx.doi.org/10.1002/anie.20080262110.1002/anie.200802621Search in Google Scholar PubMed

[9] Carlson, E. E., May, J. F., & Kiessling, L. L. (2006). Chemical probes of UDP-galactopyranose mutase. Chemistry & Biology, 13, 825–837. DOI: 10.1016/j.chembiol.2006.06.007. http://dx.doi.org/10.1016/j.chembiol.2006.06.00710.1016/j.chembiol.2006.06.007Search in Google Scholar PubMed

[10] Commarmot, R., Didenot, D., & Gardais, J.-F. (1985). Appareil de minéralisation pour le traitement individuel, de façon automatique, d’échantillons de produits placés dans des récipients. FR Patent No. FR2560686. Paris, France: Institut National de la Propriété Industrielle. Search in Google Scholar

[11] Degterev, A., Lugovskoy, A., Cardone, M., Mulley, B., Wagner, G., Mitchison, T., & Yuan, J. (2001). Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-XL. Nature Cell Biology, 3, 173–182. DOI: 10.1038/35055085. http://dx.doi.org/10.1038/3505508510.1038/35055085Search in Google Scholar PubMed

[12] Edwards, B. S., Bologa, C., Young, S. M., Balakin, K. V., Prossnitz, E. R., Savchuck, N. P., Sklar, L. A., & Oprea, T. I. (2005). Integration of virtual screening with high-throughput flow cytometry to identify novel small molecule formylpeptide receptor antagonists. Molecular Pharmacology, 68, 1301–1310. DOI: 10.1124/mol.105.014068. http://dx.doi.org/10.1124/mol.105.01406810.1124/mol.105.014068Search in Google Scholar PubMed

[13] Fujishima, H., & Tsubota, K. (2002). Improvement of corneal fluorescein staining in post cataract surgery of diabetic patients by an oral aldose reductase inhibitor, ONO-2235. British Journal of Ophtalmology, 86, 860–863. DOI: 10.1136/bjo.86.8.860. http://dx.doi.org/10.1136/bjo.86.8.86010.1136/bjo.86.8.860Search in Google Scholar PubMed PubMed Central

[14] Gaonkar, S. L., & Shimizu, H. (2010). Microwave-assisted synthesis of the antihyperglycemic drug rosiglitazone. Tetrahedron, 66, 3314–3317. DOI: 10.1016/j.tet.2010.03.006. http://dx.doi.org/10.1016/j.tet.2010.03.00610.1016/j.tet.2010.03.006Search in Google Scholar

[15] Gränacher, C., & Mahal, A. (1923). Über die verwendung des rhodanins zu organischen synthesen III. Derivate des oxindols. Helvetica Chimica Acta, 6, 467–482. DOI: 10.1002/hlca.19230060149. http://dx.doi.org/10.1002/hlca.1923006014910.1002/hlca.19230060149Search in Google Scholar

[16] Grant, E. B., Guiadeen, D., Baum, E. Z., Foleno, B. D., Jin, H., Montenegro, D. A., Nelson, E. A., Bush, K., & Hlasta, D. J. (2000). The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorganic & Medicinal Chemistry Letters, 10, 2179–2182. DOI: 10.1016/S0960-894X(00)00444-3. http://dx.doi.org/10.1016/S0960-894X(00)00444-310.1016/S0960-894X(00)00444-3Search in Google Scholar

[17] Hotta, N., Akanuma, Y., Kawamori, R., Matsuoka, K., Oka, Y., Shichiri, M., Toyota, T., Nakashima, M., Yoshimura, I., Sakamoto, N., & Shigeta, Y. (2006). Long-term clinical effects of Epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial. Diabetes Care, 29, 1538–1544. DOI: 10.2337/dc05-2370. http://dx.doi.org/10.2337/dc05-237010.2337/dc05-2370Search in Google Scholar

[18] Hu, Y., Helm, J. S., Chen, L., Ginsberg, C., Gross, B., Kraybill, B., Tiyanont, K., Fang, X., Wu, T., & Walker, S. (2004). Identification of selective inhibitors for the glucosyltransferase MurG via high-throughput screening. Chemistry & Biology, 11, 703–711. DOI: 10.1016/j.chembiol.2004.02.024. http://dx.doi.org/10.1016/j.chembiol.2004.02.02410.1016/j.chembiol.2004.02.024Search in Google Scholar

[19] Jacquault, P. (1993). Procédé de mesure de la température d’un échantillon placé dans un récipient d’un appareil d’application de micro-ondes et appareil mettant en oeuvre ledit procédé. FR Patent No. FR2685478. Paris, France: Institut National de la Propriété Industrielle. Search in Google Scholar

[20] Johnson, S. L., Chen, L.-H., Harbach, R., Sabet, M., Savinov, A., Cotton, N. J. H., Strongin, A., Guiney, D., & Pellecchia, M. (2008). Rhodanine derivatives as selective protease inhibitors against bacterial toxins. Chemical Biology & Drug Design, 71, 131–139. DOI: 10.1111/j.1747-0285.2007.00617.x. http://dx.doi.org/10.1111/j.1747-0285.2007.00617.x10.1111/j.1747-0285.2007.00617.xSearch in Google Scholar

[21] Jones, H. A., & Hann, R. M. (1928). The condensation of rhodanic acids with 5-nitro-isatin. Rhodanal-Δ-5,3′-5′-nitrooxindoles. Journal of the American Chemical Society, 50, 2491–2493. DOI: 10.1021/ja01396a025. http://dx.doi.org/10.1021/ja01396a02510.1021/ja01396a025Search in Google Scholar

[22] Lanni, T. B., Jr., Greene, K. L., Kolz, C. N., Para, K. S., Visnick, M., Mobley, J. L., Dudley, D. T., Baginski, T. J., & Liimatta, M. B. (2007). Design and synthesis of phenethyl benzo[1,4]oxazine-3-ones as potent inhibitors of PI3Kinaseγ. Bioorganic and Medicinal Chemistry Letters, 17, 756–760. DOI: 10.1016/j.bmcl.2006.10.080. http://dx.doi.org/10.1016/j.bmcl.2006.10.08010.1016/j.bmcl.2006.10.080Search in Google Scholar

[23] Larhed, M., & Hallberg, A. (2001). Microwave-assisted high-speed chemistry: a new technique in drug discovery. Drug Discovery Today, 6, 406–416. DOI: 10.1016/S1359-6446(01)01735-4. http://dx.doi.org/10.1016/S1359-6446(01)01735-410.1016/S1359-6446(01)01735-4Search in Google Scholar

[24] Lesyk, R. B., & Zimenkovsky, B. S. (2004). 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Current Organic Chemistry, 8, 1547–1577. DOI: 10.2174/1385272043369773. http://dx.doi.org/10.2174/138527204336977310.2174/1385272043369773Search in Google Scholar

[25] Lohray, B. B., Bhushan, V., Rao, P. B., Madhavan, G. R., Murali, N., Rao, K. N., Reddy, K. A., Rajesh, B. M., Reddy, P. G., Chakrabarti, R., & Rajagopalan, R. (1997). Novel indole containing thiazolidinedione derivatives as potent euglycemic and hypolipidaemic agents. Bioorganic & Medicinal Chemistry Letters, 7, 785–788. DOI: 10.1016/S0960-894X(97)00118-2. http://dx.doi.org/10.1016/S0960-894X(97)00118-210.1016/S0960-894X(97)00118-2Search in Google Scholar

[26] Loupy, A. (Ed.) (2006). Microwave in organic chemistry (2nd ed.). Weinheim, Germany: Wiley-VCH. Search in Google Scholar

[27] Mallick, S. K., Martin, A. R., & Lingard, R. G. (1971). Synthesis and antimicrobial evaluation of some 5-(5-nitrofurylidene) rhodanines, 5-(5-nitrofurylidene)thiazolidine-2,4-diones, and their vinylogs. Journal of Medicinal Chemistry, 14, 528–532. DOI: 10.1021/jm00288a017. http://dx.doi.org/10.1021/jm00288a01710.1021/jm00288a017Search in Google Scholar

[28] McKee, T. D., Suto, R. K., Tibbitts, T., & Sowadski, J. (2004). Pin-1 modulating compounds and methods of use thereof. WO Patent No.WO2004028535. Geneva, Switzerland: World Intellectual Property Organization. Search in Google Scholar

[29] Melnick, A. M., MacKerell, A. D., Jr., & Prive, G. G. (2008). Small molecule inhibitors of BCL6. WO Patent No. WO 2008066887. Geneva, Switzerland: World Intellectual Property Organization. Search in Google Scholar

[30] Momose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S., & Sohda, T. (1991). Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chemical & Pharmaceutical Bulletin, 39, 1440–1445. 10.1248/cpb.39.1440Search in Google Scholar

[31] Ohishi, Y., Mukai, T., Nagahara, M., Yajima, M., Kajikawa, N., Miyahara, K., & Takano, T. (1990). Preparations of 5-alkylmethylidene-3-carboxymethylrhodanine derivatives and their aldose reductase inhibitory activity. Chemical & Pharmaceutical Bulletin, 38, 1911–1919. 10.1248/cpb.38.1911Search in Google Scholar

[32] Pardasani, R. T., Pardasani, P., Sherry, D., & Chaturvedi, V. (2001). Synthetic and antibacterial studies of rhodanine derivatives with indole-2,3-diones. Indian Journal of Chemistry Section B, 40, 1275–1278. Search in Google Scholar

[33] Polychronopoulos, P., Magiatis, P., Skaltsounis, A.-L., Myrianthopoulos, V., Mikros, E., Tarricone, A., Musacchio, A., Roe, S. M., Pearl, L., Leost, M., Greengard, P., & Meijer, L. (2004). Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. Journal of Medicinal Chemistry, 47, 935–946. DOI: 10.1021/jm031016d. http://dx.doi.org/10.1021/jm031016d10.1021/jm031016dSearch in Google Scholar

[34] Primot, A., Baratte, B., Gompel, M., Borgne, A., Liabeuf, S., Romette, J.-L., Jho, E.-H., Costantini, F., & Meijer, L. (2000). Purification of GSK-3 by affinity chromatography on immobilized axin. Protein Expression and Purification, 20, 394–404. DOI: 10.1006/prep.2000.1321. http://dx.doi.org/10.1006/prep.2000.132110.1006/prep.2000.1321Search in Google Scholar

[35] Reinhardt, J., Ferandin, Y., & Meijer, L. (2007). Purification of CK1 by affinity chromatography on immobilised axin. Protein Expression and Purification, 54, 101–109. DOI: 10.1016/j.pep.2007.02.020. http://dx.doi.org/10.1016/j.pep.2007.02.02010.1016/j.pep.2007.02.020Search in Google Scholar

[36] Sawayama, T., Kinugasa, H., & Nishimura, H. (1976). The structures of isatylidene 3 mercaptoacetic acid and its related compounds. Chemical & Pharmaceutical Bulletin, 24, 2305–2311. 10.1248/cpb.24.2305Search in Google Scholar

[37] Sim, M. M., Ng, S. B., Buss, A. D., Crasta, S. C., Goh, K. L., & Lee, S. K. (2002). Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/l-alanine ligase. Bioorganic & Medicinal Chemistry Letters, 12, 697–699. DOI: 10.1016/S0960-894X(01)00832-0. http://dx.doi.org/10.1016/S0960-894X(01)00832-010.1016/S0960-894X(01)00832-0Search in Google Scholar

[38] Sing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P., & Sim, M. M. (2001). Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorganic & Medicinal Chemistry Letters, 11, 91–94. DOI: 10.1016/S0960-894X(00)00610-7. http://dx.doi.org/10.1016/S0960-894X(00)00610-710.1016/S0960-894X(00)00610-7Search in Google Scholar

[39] Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D., & Zacchino, S. A. (2007). Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorganic & Medicinal Chemistry, 15, 484–494. DOI: 10.1016/j.bmc.2006.09.038. http://dx.doi.org/10.1016/j.bmc.2006.09.03810.1016/j.bmc.2006.09.038Search in Google Scholar

[40] Swewczuk, L. M., Saldanha, S. A., Ganguly, S., Bowers, E. M., Javoroncov, M., Karanam, B., Culhane, J. C., Holbert, M. A., Klein, D. C., Abagyan, R., & Cole, P. A. (2007). De novo discovery of serotonin N-acetyltransferase inhibitors. Journal of Medicinal Chemistry, 50, 5330–5338. DOI: 10.1021/jm0706463. http://dx.doi.org/10.1021/jm070646310.1021/jm0706463Search in Google Scholar

[41] Turkevich, N. M., Agaev, K. A., Steblyuk, P. N., & Sementsiv, G. N. (1982). Thiazolidines with adamantyl substituents. Pharmaceutical Chemistry Journal, 16, 668–670. http://dx.doi.org/10.1007/BF0077217510.1007/BF00772175Search in Google Scholar

[42] Whitesitt, C. A., Simon, R. L., Reel, J. K., Sigmund, S. K., Phillips, M. L., Shadle, J. K., Heinz, L. J., Koppel, G. A., Hunden, D. C., Lifer, S. L., Berry, D., Ray, J., Little, S. P., Liu, X., Marshall, W. S., & Panetta, J. A. (1996). Synthesis and structure-activity relationships of benzophenones as inhibitors of cathepsin D. Bioorganic & Medicinal Chemistry Letters, 6, 2157–2162. DOI: 10.1016/0960-894X(96)00393-9. http://dx.doi.org/10.1016/0960-894X(96)00393-910.1016/0960-894X(96)00393-9Search in Google Scholar

[43] Yang, D.-H., Chen, Z.-C., Chen, S.-Y., & Zheng, Q.-G. (2003). A convenient synthesis of 5-benzylidenethiazolidine-2,4-diones under microwave irradiation without solvent. Journal of Chemical Research, 2003, 330–331. DOI: 10.3184/030823403 103174272. http://dx.doi.org/10.3184/03082340310317427210.3184/030823403103174272Search in Google Scholar

[44] Zapadnyuk, V. I. (1966). Anticonvulsive drugs, their classification and mechanism of action. Vrachebnoe Delo (Kiev), 10, 71–75. Search in Google Scholar

[45] Zapadnyuk, V. I. (1962). The dependence of anticonvulsion activity and toxicity of thiohydantoin and rhodanine derivatives on the chemical structure. Farmatsevticheskii Zhurnal (Kiev), 17, 36–41. Search in Google Scholar

[46] Zawahir, Z., Dayam, R., Deng, J., Pereira, C., & Neamati, N. (2009). Pharmacophore guided discovery of smallmolecule human apurinic/apyrimidinic endonuclease 1 inhibitors. Journal of Medicinal Chemistry, 52, 20–32. DOI: 10.1021/jm800739m. http://dx.doi.org/10.1021/jm800739m10.1021/jm800739mSearch in Google Scholar PubMed

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-010-0104-9/html
Scroll to top button