Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 8, 2009

Novel use of silicon nanocrystals and nanodiamonds in biology

  • Anna Fucikova EMAIL logo , Jan Valenta , Ivan Pelant and Vitezslav Brezina
From the journal Chemical Papers

Abstract

The presented work is aimed at the development of nontoxic nanocrystalline silicon fluorescence labels, biodegradable in living body and long-term stable, and of fluorescent nanodiamonds mainly for in vitro use. These novel fluorescence labels could be very good substitutes for commercially used quantum dots (e.g. cadmium compound quantum dots) which can be toxic according to the latest results. In this work, manufacturing of porous nanocrystalline silicon (por-Si) is described, several basic optical properties of por-Si are presented and the influence of Si nanocrystals, nanodiamonds, and milled silicon on the growth of a cell culture of L929 mouse fibroblast and HeLa cells is compared. Bio-interaction of nanoparticles was studied by optical transmission microscopy, time-lapse microphotography of cell culture evolution, fluorescence microscopy, fluorescence microspectroscopy, and scanning electron microscopy. The size and shape of nanocrystals were determined using atomic force microscopy (AFM).

[1] Canham, L. T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 57, 1046–1048. DOI: 10.1063/1.103561. http://dx.doi.org/10.1063/1.10356110.1063/1.103561Search in Google Scholar

[2] Dohnalová, K., Pelant, I., Kůsov Crégut, O., Rehspringer, J.-L., Hönerlage, B., Ostatnicky, T., & Bakardjeva, S. (2008). Closely packed luminescent silicon nanocrystals in a distributed-feedback laser cavity. New Journal of Physics, 10, 063014. DOI: 10.1088/1367-2630/10/6/063014. 10.1088/1367-2630/10/6/063014Search in Google Scholar

[3] Eidelman, E. D., Siklitsky, V. I., Sharonova, M. A., Yagovkina, A., Vul’, A. Ya., Takahashi, M., Inakuma, M., Ozawa, M., & Osawa, E. (2005). A stable suspension of single ultrananocrystalline diamond particles. Diamond and Related Materials, 14, 1765–1769. DOI: 10.1016/j.diamond.2005.08.057. http://dx.doi.org/10.1016/j.diamond.2005.08.05710.1016/j.diamond.2005.08.057Search in Google Scholar

[4] Fučíková, A., Valenta, J., Pelant, I., & Březina, V. (2007). Studies of nanocrystalline silicon colloidal suspensions and their interaction with a biological system. Acta Metallurgica Slovaca, 13, 88–92. Search in Google Scholar

[5] Kumar, C. S. S. R. (Ed.) (2005). Biofunctionalization of nanomaterials. Weinheim, Germany: Wiley-VCH. Search in Google Scholar

[6] Kůsová, K., Pelant, I., Fučíková, A. & Valenta, J. (2008). Yellow-emitting colloidal suspensions of silicon nanocrystals: Fabrication technology, luminescence performance and application prospects. Physica E, 41, 982–985. DOI: 10.1016/j.physe.2008.08.02. http://dx.doi.org/10.1016/j.physe.2008.08.022Search in Google Scholar

[7] Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials, 4, 435–446. DOI: 10.1038/nmat1390. http://dx.doi.org/10.1038/nmat139010.1038/nmat1390Search in Google Scholar PubMed

[8] Murcia, M. J., & Neumann, C. A. (2005). Biofunctionalization of fluorescent nanoparticles. In C. S. S. R. Kumar (Ed.), Biofunctionalization of nanomaterials (pp. 1–40). Weinheim, Germany: Wiley-VCH. Search in Google Scholar

[9] Osawa, E. (2005). Disintegration and purification of crude aggregates of detonation nanodiamond. A few remarks on nano methodology. In D. M. Gruen, O. A. Shenderova, & A. Ya. Vul’ (Eds.), Synthesis, properties and applications of ultrananocrystalline diamond (pp. 231–240). Dordrecht, The Netherlands: Springer. http://dx.doi.org/10.1007/1-4020-3322-2_1710.1007/1-4020-3322-2_17Search in Google Scholar

[10] Ossicini, S., Pavesi, L., & Priolo, F. (2003). Light emitting silicon for microphotonics. Berlin/Heidelberg, Germany: Springer. 10.1007/b13588Search in Google Scholar

[11] Valenta, J., Fučíková, A., Pelant, I., Kůsová, K., Aleknavičius, A., Cibulka, O., Fojtík, A., & Kada, G. (2008). On the origin of the fast photoluminescence band in small silicon nanoparticles. New Journal of Physics, 10, 073022. DOI: 10.1088/1367-2630/10/7/073022. 10.1088/1367-2630/10/7/073022Search in Google Scholar

[12] Veselská, R., & Janisch, R. (2000). The effect of UV irradiation on changes in cytoskeleton and viability of mouse fibroblast L929 cell line. Scripta Medica, 73, 393–408. Search in Google Scholar

[13] Vial, S., Mansuy, C., Sagan, S., Irinopoulou, T., Burlina, F., Boudou, J.-P., Chassaing, G., & Lavielle, S. (2008). Peptidegrafted nanodiamonds: preparation, cytotoxicity and uptake in cells. ChemBioChem, 9, 2113–2119. DOI: 10.1002/cbic.200800247. http://dx.doi.org/10.1002/cbic.20080024710.1002/cbic.200800247Search in Google Scholar PubMed

[14] Yu, S.-J., Kang, M.-W., Chang, H.-C., Chen, K.-M., & Yu, Y.-C. (2005). Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. Journal of the American Chemical Society, 127, 17604–17605. DOI: 10.1021/ja0567081. http://dx.doi.org/10.1021/ja056708110.1021/ja0567081Search in Google Scholar PubMed

Published Online: 2009-10-8
Published in Print: 2009-12-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-009-0075-x/html
Scroll to top button