Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 1, 2008

Photocatalytic reduction of CO2 over TiO2 based catalysts

  • Kamila Kočí EMAIL logo , Lucie Obalová and Zdeněk Lacný
From the journal Chemical Papers

Abstract

At present, carbon dioxide is considered the largest contributor among greenhouse gases. This review covers the current state of problem of carbon dioxide emissions from industrial and combustion processes, the principle of photocatalysis, existing literature related to photocatalytic CO2 reduction over TiO2 based catalysts and the effects of important parameters on the process performance including light wavelength and intensity, type of reductant, metal-modified surface, temperature and pressure.

[1] Adachi, K., Ohta, K., & Mizuno, M. (1994). Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 53, 187–190. DOI:10.1016/0038-092X(94)90480-4. http://dx.doi.org/10.1016/0038-092X(94)90480-410.1016/0038-092X(94)90480-4Search in Google Scholar

[2] Anpo, M., Yamashita, H., Ichinashi, Y., & Ehara, S. (1995). Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry, 396, 21–26. DOI: 10.1016/0022-0728(95)04141-A. http://dx.doi.org/10.1016/0022-0728(95)04141-A10.1016/0022-0728(95)04141-ASearch in Google Scholar

[3] Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. The Journal of Physical Chemistry B, 101, 2632–2636. DOI:10.1021/jp962696h. http://dx.doi.org/10.1021/jp962696h10.1021/jp962696hSearch in Google Scholar

[4] Anpo, M. Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S. G., Ichihashi, Y., G., Park, D. R., Suzuki, Y., Koyano, K., & Tatsumi, T. (1998). Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today, 44, 327–332. DOI: 10.1016/S0920-5861(98)00206-5. http://dx.doi.org/10.1016/S0920-5861(98)00206-510.1016/S0920-5861(98)00206-5Search in Google Scholar

[5] Bhatkhande, D. S., Pangarkar, V. G., & Beenackers, A. A. C. M. (2001). Photocatalytic degradation for environmental applications — a review. Journal of Chemical Technology and Biotechnology, 77, 102–116. DOI: 10.1002/jctb.532. http://dx.doi.org/10.1002/jctb.53210.1002/jctb.532Search in Google Scholar

[6] Bouras, P., Stathatos, E., & Lianos, P. (2007). Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis. B: Environmental, 73, 51–59. DOI:10.1016/j.apcatb.2006.06.007. http://dx.doi.org/10.1016/j.apcatb.2006.06.00710.1016/j.apcatb.2006.06.007Search in Google Scholar

[7] Dijkstra, J. W., & Jansen, D. (2004). Novel concepts for CO2 capture. Energy, 29, 1249–1257. DOI: 10.1016/j.energy.2004.03.084. http://dx.doi.org/10.1016/j.energy.2004.03.08410.1016/j.energy.2004.03.084Search in Google Scholar

[8] Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93, 341–357, DOI:10.1021/cr00017a016. http://dx.doi.org/10.1021/cr00017a01610.1021/cr00017a016Search in Google Scholar

[9] Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., & Yanagida, S. (1997). Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. Journal of Physical Chemistry B, 101, 8270–8278. DOI:10.1021/jp971621q. http://dx.doi.org/10.1021/jp971621q10.1021/jp971621qSearch in Google Scholar

[10] Gokon, N., Hasegawa, N., Kaneko, H., Aoki, H., Tamaura, Y., & Kitamura, M. (2003). Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Solar Energy Materials and Solar Cells, 80. 335–341, DOI: 10.1016/j.solmat.2003.08.016. http://dx.doi.org/10.1016/j.solmat.2003.08.01610.1016/j.solmat.2003.08.016Search in Google Scholar

[11] Iijima, S. (1991). Helical microtubules of graphitic carbon, Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a010.1038/354056a0Search in Google Scholar

[12] Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277, 637–638. DOI: 10.1038/277637a0. http://dx.doi.org/10.1038/277637a010.1038/277637a0Search in Google Scholar

[13] Intergovernmental Panel on Climate Change (2005). Special report on carbon dioxide capture and storage. IPCC report. Retrieved January 10, 2007, from http://www.mnp.nl/ipcc/pages_media/SRCCS-final/ccsspm.pdf. Search in Google Scholar

[14] Kaneco, S., Kurimoto, H., Ohta, K., Mizuno, T., & Saji, A. (1997). Photocatalytic reduction of CO2 using TiO2 powders in liquid medium. Journal of Photochemistry and Photobiology A: Chemistry, 109, 59–63. DOI: 10.1016/S1010-6030(97)00107-X. http://dx.doi.org/10.1016/S1010-6030(97)00107-X10.1016/S1010-6030(97)00107-XSearch in Google Scholar

[15] Kaneco, S., Shimizu, Y., Ohta, K., & Mizuno, T. (1998). Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry, 115, 223–226. DOI: 10.1016/S1010-6030(98)00274-3. http://dx.doi.org/10.1016/S1010-6030(98)00274-310.1016/S1010-6030(98)00274-3Search in Google Scholar

[16] Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., & Mizuno, T. (1999). Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy, 24, 21–30. DOI:10.1016/S0360-5442(98)00070-X. http://dx.doi.org/10.1016/S0360-5442(98)00070-X10.1016/S0360-5442(98)00070-XSearch in Google Scholar

[17] Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (1997). Photoreduction of carbon dioxide with hydrogen over ZrO2. Chemical Communications, 1997, 841–844. DOI: 10.1039/a700185a. http://dx.doi.org/10.1039/a700185a10.1039/a700185aSearch in Google Scholar

[18] Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., & Yoshida, S. (1999). Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 126, 117–124. DOI: 10.1016/S1010-6030(99)00113-6. http://dx.doi.org/10.1016/S1010-6030(99)00113-610.1016/S1010-6030(99)00113-6Search in Google Scholar

[19] Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (2000a). Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Physical Chemistry Chemical Physics, 2, 2635–2639. DOI: 10.1039/b001642j. http://dx.doi.org/10.1039/b001642j10.1039/b001642jSearch in Google Scholar

[20] Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (2000b). Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2, 5302–5307. DOI: 10.1039/b005315p. http://dx.doi.org/10.1039/b005315p10.1039/b005315pSearch in Google Scholar

[21] Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T., & Yoshida, S. (2001). Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics, 3, 1108–1113. DOI: 10.1039/b008887k. http://dx.doi.org/10.1039/b008887k10.1039/b008887kSearch in Google Scholar

[22] Kosugi, T., Hayashi, A., Matsumoto, T., Akimoto, K., Tokimatsu, K., Yoshida, H., Tomoda, T., & Kaya, Y. (2004). Time to realization: Evaluation of CO2 capture technology R&Ds by GERT (Graphical Evaluation and Review Technique) analyses. Energy, 29, 1297–1308. DOI:10.1016/j.energy.2004.03.088. http://dx.doi.org/10.1016/j.energy.2004.03.08810.1016/j.energy.2004.03.088Search in Google Scholar

[23] Lin, W. Y., Han, H. X., & Frei, H. (2004). CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. Journal of Physical Chemistry B, 108, 18269–18273. DOI: 10.1021/jp040345u. http://dx.doi.org/10.1021/jp040345u10.1021/jp040345uSearch in Google Scholar

[24] Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758. DOI:10.1021/cr00035a013. http://dx.doi.org/10.1021/cr00035a01310.1021/cr00035a013Search in Google Scholar

[25] Liu, B.-J., Torimoto, T., Matsumoto, H., & Yoneyama, H. (1997). Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 108, 187–192. DOI: 10.1016/S1010-6030(97)00082-8. http://dx.doi.org/10.1016/S1010-6030(97)00082-810.1016/S1010-6030(97)00082-8Search in Google Scholar

[26] Liu, B.-J., Torimoto, T., & Yoneyama, H. (1998). Photocatalytic reduction of carbon dioxide in the presence of nitrate using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 115, 227–230. DOI: 10.1016/S1010-6030(98)00272-X. http://dx.doi.org/10.1016/S1010-6030(98)00272-X10.1016/S1010-6030(98)00272-XSearch in Google Scholar

[27] Matthews, R. W., & McEvoy, S. R. (1992). A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors. Journal of Photochemistry and Photobiology A: Chemistry, 66, 355–366. DOI: 10.1016/1010-6030(92)80008-J. http://dx.doi.org/10.1016/1010-6030(92)80008-J10.1016/1010-6030(92)80008-JSearch in Google Scholar

[28] Meisen, A., & Shuai, X. (1997). Research and development issues in CO2 capture. Energy Conversion and Management, 38, S37–S42. DOI: 10.1016/S0196-8904(96)00242-7. http://dx.doi.org/10.1016/S0196-8904(96)00242-710.1016/S0196-8904(96)00242-7Search in Google Scholar

[29] Metz, B., Davidson, O., Swart, R., & Pan, J. (2001). Climate change 2001: mitigation. Contribution of working groups III to the third assessment report of the Intergovernmental Panel on Climate Change. Retrieved January 10, 2007, from http://www.grida.no/climate/ipcc tar/wg3/index.htm. Search in Google Scholar

[30] Mizuno, T., Adachi, K., Ohta, K., & Saji, A. (1996). Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 98, 87–90. DOI: 10.1016/1010-6030(96)04334-1. http://dx.doi.org/10.1016/1010-6030(96)04334-110.1016/1010-6030(96)04334-1Search in Google Scholar

[31] Pan, P.-W., & Chen, Y.-W. (2007). Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 8, 1546–1549. DOI:10.1016/j.catcom.2007.01.006. http://dx.doi.org/10.1016/j.catcom.2007.01.00610.1016/j.catcom.2007.01.006Search in Google Scholar

[32] Riemer, P. (1996). Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the IEA Greenhouse Gas R&D programme. Energy Conversion and Management, 37, 665–670. DOI: 10.1016/0196-8904(95)00237-5. http://dx.doi.org/10.1016/0196-8904(95)00237-510.1016/0196-8904(95)00237-5Search in Google Scholar

[33] Sasirekha, N., Basha, S. J. S., & Shanthi, K. (2006). Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental, 62, 169–180. DOI: 10.1016/j.apcatb.2005.07.009. http://dx.doi.org/10.1016/j.apcatb.2005.07.00910.1016/j.apcatb.2005.07.009Search in Google Scholar

[34] Sayama, K., & Arakawa, H. (1993). Photocatalytic decomposition of water and photocatalytic reduction of carbon-dioxide over zirconia catalyst. Journal of Physical Chemistry, 97, 531–533. DOI: 10.1021/j100105a001. http://dx.doi.org/10.1021/j100105a00110.1021/j100105a001Search in Google Scholar

[35] Subrahmanyam, M., Kaneco, S., & Alonso-Vante, N. (1999). A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Applied Catalysis B: Environmental, 23, 169–174. DOI: 10.1016/S0926-3373(99)00079-X. http://dx.doi.org/10.1016/S0926-3373(99)00079-X10.1016/S0926-3373(99)00079-XSearch in Google Scholar

[36] Tan, S. S., Zou, L., & Hu, E. (2006). Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catalysis Today, 115, 269–273. DOI:10.1016/j.cattod.2006.02.057. http://dx.doi.org/10.1016/j.cattod.2006.02.05710.1016/j.cattod.2006.02.057Search in Google Scholar

[37] Tan, S. S., Zou, L., & Hu, E. (2007). Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials, 8, 89–92. DOI: 10.1016/j.stam.2006.11.004. http://dx.doi.org/10.1016/j.stam.2006.11.00410.1016/j.stam.2006.11.004Search in Google Scholar

[38] Teramura, K., Tanaka, T., Ishikawa, H., Kohno, Y., & Funabiki, T. (2004). Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. Journal Physical Chemistry B, 108, 346–354. DOI: 10.1021/jp0362943. http://dx.doi.org/10.1021/jp036294310.1021/jp0362943Search in Google Scholar

[39] Tseng, I.-H., Chang, W.-C., & Wu, J. C. S. (2002). Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37, 37–48. DOI: 10.1016/S0926-3373(01)00322-8. http://dx.doi.org/10.1016/S0926-3373(01)00322-810.1016/S0926-3373(01)00322-8Search in Google Scholar

[40] Tseng, I.-H., Wu, J. C. S., & Chou H.-Y. (2004). Effects of solgel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis, 221, 432–440. DOI:10.1016/j.jcat.2003.09.002. http://dx.doi.org/10.1016/j.jcat.2003.09.00210.1016/j.jcat.2003.09.002Search in Google Scholar

[41] Ulagappan, N., & Frei, H. (2000). Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. Journal of Physical Chemistry A, 104, 7834–7839. DOI: 10.1021/jp001470i. http://dx.doi.org/10.1021/jp001470i10.1021/jp001470iSearch in Google Scholar

[42] Usubharatana, P., McMartin, D., Veawab, A., & Tontiwachwuthikul, P. (2006). Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & Engineering Chemistry Research, 45, 2558–2568. DOI:10.1021/ie0505763. http://dx.doi.org/10.1021/ie050576310.1021/ie0505763Search in Google Scholar

[43] Wu, J. C. S., Lin, H.-M., & Lai, C.-L. (2005). Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis A: General, 296, 194–200. DOI:10.1016/j.apcata.2005.08.021. http://dx.doi.org/10.1016/j.apcata.2005.08.02110.1016/j.apcata.2005.08.021Search in Google Scholar

[44] Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., & Ma, L.-L. (2007). Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 45, 717–721. DOI:10.1016/j.carbon.2006.11.028. http://dx.doi.org/10.1016/j.carbon.2006.11.02810.1016/j.carbon.2006.11.028Search in Google Scholar

[45] Yamashita, H., Shiga, A., Kawasaki, S., Ichihashi, Y., Ehara, S., & Anpo, M. (1995). Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts. Energy Conversion, 36, 617–620. DOI:10.1016/0196-8904(95)00081-N. http://dx.doi.org/10.1016/0196-8904(95)00081-N10.1016/0196-8904(95)00081-NSearch in Google Scholar

[46] Yamashita, H., Fujii, Y., Ichinashi, Y., Zhang, S. G., Ikeue, K., Park, D. R., Koyano, K., Tatsumi, T., & Anpo, M. (1998). Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today, 45, 221–227. DOI: 10.1016/S0920-5861(98)00219-3. http://dx.doi.org/10.1016/S0920-5861(98)00219-310.1016/S0920-5861(98)00219-3Search in Google Scholar

[47] Yu, Y., Yu, J. C., Yu, J.-G., Kwok, Y.-C., Che, Y.-K., Zhao, J.-C., Ding, L., Ge, W.-K., & Wong, P.-K. (2005). Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General, 289, 186–196. DOI: 10.1016/j.apcata.2005.04.057. http://dx.doi.org/10.1016/j.apcata.2005.04.05710.1016/j.apcata.2005.04.057Search in Google Scholar

Published Online: 2008-2-1
Published in Print: 2008-2-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-007-0072-x/html
Scroll to top button