Skip to main content
Log in

Didymozoids in Muscle of Atlantic Chub Mackerel (Scomber colias)

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Background

Digenean trematodes of the family Didymozoidae are tissue parasites that are particularly common in scombrid fish. These parasites can reduce the commercial value of fish, especially the ones occurring in the muscle.

Purpose

In the present study and for the first time, we report the occurrence of didymozoids in muscle tissue of Atlantic chub mackerel (Scomber colias) collected in northeast Atlantic (Portuguese coast).

Methods

The entire musculature of 64 Scomber colias was removed and examined macroscopically and under a stereomicroscope to search for parasites.

Results

The prevalence (3.1%) and abundance (0.03) of infection detected were quite low, but the parasites cause muscle softening decreasing the quality of the infected fish. If the infection levels increase, this may constitute a cause of concern for the fisheries and canning industry.

Conclusion

Didymozoids identified in this study are closely related to muscle parasites detected in other fish species of the genus Scomber, most probably the same species. Phylogenetic analysis also corroborates the hypothesis that muscle-parasitizing didymozoids are distinct from the ones parasitizing other fish organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abe N, Okamoto M (2015) Molecular characterization of muscle-parasitizing Didymozoid from a chub mackerel, Scomber japonicus. Acta Parasitol 60:557–562. https://doi.org/10.1515/ap-2015-0080

    Article  CAS  PubMed  Google Scholar 

  2. Abe N, Okamoto M, Maehara T (2014) Molecular characterization of muscle-parasitizing Didymozoids in marine fishes. Acta Parasitol 59:354–358. https://doi.org/10.2478/s11686-014-0234-2

    Article  CAS  PubMed  Google Scholar 

  3. Alves DR, Luque JL (2006) Ecologia das comunidades de metazoários parasitos de cinco espécies de escombrídeos (Perciformes: Scombridae) do litoral do estado do Rio de Janeiro, Brasil. Revista Brasileira de Parasitologia Veterinária 15:167–181

    PubMed  Google Scholar 

  4. Block BA, Stevens ED (eds) (2001) Tuna: physiology, ecology, and evolution, vol 19, 1st edn. Gulf Professional Publishing, Oxford, p 468

    Google Scholar 

  5. Brito A, Ramos V, Mota R, Lima S, Santos A, Vieira J et al (2017) Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Mol Phylogenet Evol 111:18–34. https://doi.org/10.1016/j.ympev.2017.03.006

    Article  PubMed  Google Scholar 

  6. Bush AO, Lafferty KD, Lotz JM, Shostak AW et al (1997) Parasitology meets ecology on its own terms: Margolis et al. revised. J Parasitol 83:575–583. https://doi.org/10.2307/3284227

    Article  CAS  PubMed  Google Scholar 

  7. Cabral HN, Murta AG (2002) The diet of blue whiting, hake, horse mackerel and mackerel off Portugal. J Appl Ichthyol 18:14–23

    Article  Google Scholar 

  8. Chero J, Cruces C, Iannacone J, Sáez G, Sanchez L, Minaya D et al (2015) First record of Unitubulotestis pelamydis (Trematoda: Didymozoidae) and Sphyriocephalus tergestinus (Cestoda: Sphyriocephalidae) in eastern pacific bonito, Sarda chiliensis (Perciformes: Scombridae) in Peru. Neotrop Helminthol 9:313–323

    Google Scholar 

  9. Collette B, Nauen C (1983) Scombrids of the world An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fish Synop 125:137

    Google Scholar 

  10. Costa G, Cavallero S, D’amelio S, Paggi L, Garcia Santamaria MT, Borges Perera C et al (2011) Helminth parasites of the Atlantic chub mackerel, Scomber colias Gmelin, 1789 from Canary Islands, Central North Atlantic, with comments on their relations with other Atlantic regions. Acta Parasitol 56:98–104. https://doi.org/10.2478/s11686-011-0006-1

    Article  Google Scholar 

  11. Cremonte F, Sardella NH (1997) The parasito Fauna of Scomber japonicus Houttuyn, 1782 (Pisces: Scombridae) in two zones of the Argentine Sea. Fish Res 31:1–9

    Article  Google Scholar 

  12. Cruces C, Chero J, Iannacone J, Diestro A, Sáez G, Alvariño L (2014) Metazoans parasites of “chub mackerel” Scomber japonicus Houttuyn, 1782 (Perciformes: Scombridae) at the Port of Chicama, La Libertad, Peru. Neotrop Helminthol 8:357–381

    Google Scholar 

  13. Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eiras JC, Rego AA (1987) The histopathology of Scomber japonicus infection by Nematobothrium scombri (Trematoda: Didymozoidae) and of larval anisakid nematode infections in the liver of Pagrus pagrus. Memórias do Instituto Oswaldo Cruz 82:155–159

    Article  CAS  PubMed  Google Scholar 

  16. Galaktionov KV, Dobrovolskij A (2013) The biology and evolution of trematodes: an essay on the biology, morphology, life cycles, transmissions, and evolution of digenetic trematodes. Springer, Berlin

    Google Scholar 

  17. Gibson DI, Mackenzie K, Cottle J (1981) Halvorsenius exilis gen. et sp. nov., a new Didymozoid trematode from the mackerel Scomber scombrus L. J Nat Hist 15:917–929. https://doi.org/10.1080/00222938100770681

    Article  Google Scholar 

  18. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  19. Hermida M, Cavaleiro B, Gouveia L, Saraiva A (2018) Parasites of skipjack, Katsuwonus pelamis, from Madeira, Eastern Atlantic. Parasitol Res 117:1025–1033. https://doi.org/10.1007/s00436-018-5778-x

    Article  PubMed  Google Scholar 

  20. Justo MCN, Kohn A (2005) Didymozoidae (Digenea) parasites of Scombridae (Actinopterygii) from Rio de Janeiro coast, Brazil. Revista Brasileira de Zoociências 7:333–338

    Google Scholar 

  21. Justo MCN, Kohn A (2012) A new genus and species of the Didymozoidae (Digenea) from the skipjack tuna Katsuwonus pelamis (L.) (Scombridae). Syst Parasitol 81:195–201. https://doi.org/10.1007/s11230-011-9340-9

    Article  PubMed  Google Scholar 

  22. Justo MCN, Kohn A, Pereira CD, Flores-Lopes F (2013) Histopathology and autoecology of Didymocylindrus simplex (Digenea: Didymozoidae), parasite of Katsuwonus pelamis (Scombridae) in the Southwestern Atlantic Ocean, off South America. Zoologia 30:312–316. https://doi.org/10.1590/S1984-46702013000300008

    Article  Google Scholar 

  23. Justo MCN, Kohn A (2015) Diversity of Monogenoidea parasitizing scombrid fishes from Rio de Janeiro coast, Brazil. Check List 11:1628. https://doi.org/10.15560/11.3.1628

    Article  Google Scholar 

  24. Kamegai S, Araki J (1995) A new digenean, Didymocystis margolisi n.sp. (Didymozoidae: Didymozoinae), from the skipjack tuna, Katsuwonus pelamis, of Japan. Can J Fish Aquat Sci 52:95–97

    Article  Google Scholar 

  25. Kohn A, Justo MCN (2008) Didymocystis lamotheargumedoi n. sp. (Digenea: Didymozoidae) a parasite of three species of scombrid fishes. Revista Mexicana de Biodiversidad 79:9S–14S

    Google Scholar 

  26. Lester R, Barnes A, Habib G (1985) Parasites of skipjack tuna, Katsuwonus pelamis: fishery implications. Fish Bull 83:343–356

    Google Scholar 

  27. Madhavi R (1982) Didymozoid trematodes (including new genera and species) from marine fishes of the Waltair coast, Bay of Bengal. Syst Parasitol 4:99–124

    Article  Google Scholar 

  28. Madhavi R, Ram BS (2000) Community structure of helminth parasites of the tuna, Euthynnus affinis, from the Visakhapatnam coast, Bay of Bengal. J Helminthol 74:337–342

    Article  CAS  PubMed  Google Scholar 

  29. Mele S, Merella P, Macias D, Gomez MJ, Garippa G, Alemany F (2010) Metazoan gill parasites of wild albacore Thunnus alalunga (Bonaterre, 1788) from the Balearic Sea (western Mediterranean) and their use as biological tags. Fish Res 102:305–310. https://doi.org/10.1016/j.fishres.2010.01.002

    Article  Google Scholar 

  30. Mele S (2012) Gill metazoan parasites of tunas (Scombridae: Thunnini) from the western Mediterranean Sea: systematics, assemblages and use as biological tags. Ph.D. Thesis. Università Degli Studi Di Sassari, Scuola Di Dottorato in Riproduzione, Produzione, Benessere Animale E Sicurezza Degli Alimenti Di Origine Animale, p 157

  31. Mele S, Macias D, Gomez-Vives MJ, Garippa G, Alemany F, Merella P (2012) Metazoan parasites on the gills of the skipjack tuna Katsuwonus pelamis (Osteichthyes: Scombridae) from the Alboran Sea (western Mediterranean Sea). Dis Aquat Org 97:219–225. https://doi.org/10.3354/dao02421

    Article  PubMed  Google Scholar 

  32. Mele S, Pennino MG, Piras MC, Bellido JM, Garippa G, Merella P (2014) Parasites of the head of Scomber colias (Osteichthyes: Scombridae) from the western Mediterranean Sea. Acta Parasitol 59:173–183. https://doi.org/10.2478/s11686-014-0207-5

    Article  CAS  PubMed  Google Scholar 

  33. Mladineo I, Bott N, Nowak B, Block B (2010) Multilocus phylogenetic analyses reveal that habitat selection drives the speciation of Didymozoidae (Digenea) parasitizing Pacific and Atlantic bluefin tunas. Parasitology 137:1013–1025. https://doi.org/10.1017/S0031182009991703

    Article  CAS  PubMed  Google Scholar 

  34. Mladineo I, Segvic T, Petric M (2011) Do captive conditions favor shedding of parasites in the reared Atlantic bluefin tuna (Thunnus thynnus)? Parasitol Int 60:25–33. https://doi.org/10.1016/j.parint.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  35. Nikolaeva V (1985) Trematodes–Didymozoidae fauna, distribution and biology. In: William J, Hargis J (eds) NOAA technical report NMFS 25, pp 67–72

  36. Oliva ME, Valdivia IM, Costa G, Freitas N, De Carvalho MAP, Sanchez L et al (2008) What can metazoan parasites reveal about the taxonomy of Scomber japonicus Houttuyn in the coast of South America and Madeira Islands? J Fish Biol 72:545–554. https://doi.org/10.1111/j.1095-8649.2007.01725.x

    Article  Google Scholar 

  37. Pascual S, Abollo E, Azevedo C (2006) Host–parasite interaction of a muscle-infecting didymozoid in the Atlantic mackerel Scomber scombrus L. ICES J Mar Sci 63:169–175. https://doi.org/10.1016/j.icesjms.2005.08.010

    Article  CAS  Google Scholar 

  38. Pozdnyakov SE, Gibson DI (2008) Family Didymozoidae Monticelli, 1888. In: Bray RA, Gibson DI, Jones A (eds) Keys to the Trematoda, vol 3. CAB International, Wallingford, pp 631–734

    Chapter  Google Scholar 

  39. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650. https://doi.org/10.1093/molbev/msp077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum likelihood trees for large alignments. PLoS One 5:e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  42. Shukhgalter OA (2004) The parasite fauna of the chub mackerel (Scombridae: Scomber japonicus Houttuyn, 1782) in the central-eastern Atlantic (Atlantic coast of Northern Africa and the Azores Archipelago banks). Parazitologiya 38:160–170

    CAS  Google Scholar 

Download references

Funding

This paper was partially supports by the project INNOVMAR—Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035), supported by North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélia Saraiva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, R., Alves, M., Vieira, C.P. et al. Didymozoids in Muscle of Atlantic Chub Mackerel (Scomber colias). Acta Parasit. 64, 308–315 (2019). https://doi.org/10.2478/s11686-019-00049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11686-019-00049-5

Keywords

Navigation