Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 12, 2014

The lectin-binding pattern of nucleolin and its interaction with endogenous galectin-3

  • Dorota Hoja-Łukowicz EMAIL logo , Sylwia Kedracka-Krok , Weronika Duda and Anna Lityńska

Abstract

Unlike nuclear nucleolin, surface-expressed and cytoplasmic nucleolin exhibit Tn antigen. Here, we show localization-dependent differences in the glycosylation and proteolysis patterns of nucleolin. Our results provide evidence for different paths of nucleolin proteolysis in the nucleus, in the cytoplasm, and on the cell surface. We found that full-length nucleolin and some proteolytic fragments coexist within live cells and are not solely the result of the preparation procedure. Extranuclear nucleolin undergoes N- and O-glycosylation, and unlike cytoplasmic nucleolin, membrane-associated nucleolin is not fucosylated. Here, we show for the first time that nucleolin and endogenous galectin-3 exist in the same complexes in the nucleolus, the cytoplasm, and on the cell surface of melanoma cells. Assessments of the interaction of nucleolin with galectin-3 revealed nucleolar co-localization in interphase, suggesting that galectin-3 may be involved in DNA organization and ribosome biogenesis.

[1] Mehes, G. and Pajor, L. Nucleolin and fibrillarin expression in stimulated lymphocytes and differentiating HL-60 cells. A flow cytometric assay. Cell Prolif. 28 (1995) 329–336. http://dx.doi.org/10.1111/j.1365-2184.1995.tb00074.x10.1111/j.1365-2184.1995.tb00074.xSearch in Google Scholar

[2] Sirri, V., Roussel, P., Gendron, M.C. and Hernandez-Verdun, D. Amount of the two major Ag-NOR proteins, nucleolin, and protein B23 is cell-cycle dependent. Cytometry 28 (1997) 147–156. http://dx.doi.org/10.1002/(SICI)1097-0320(19970601)28:2<147::AID-CYTO8>3.0.CO;2-C10.1002/(SICI)1097-0320(19970601)28:2<147::AID-CYTO8>3.0.CO;2-CSearch in Google Scholar

[3] Gorczyca, W., Smolewski, P., Grabarek, J., Ardelt, B., Ita, M., Melamed, M.R. and Darzynkiewicz, Z. Morphometry of nucleoli and expression of nucleolin analyzed by laser scanning cytometry in mitogenically stimulated lymphocytes. Cytometry 45 (2001) 206–213. http://dx.doi.org/10.1002/1097-0320(20011101)45:3<206::AID-CYTO1164>3.0.CO;2-910.1002/1097-0320(20011101)45:3<206::AID-CYTO1164>3.0.CO;2-9Search in Google Scholar

[4] Mongelard, F. and Bouvet, P. Nucleolin: a multiFACeTed protein. Trends Cell Biol. 17 (2007) 80–86. http://dx.doi.org/10.1016/j.tcb.2006.11.01010.1016/j.tcb.2006.11.010Search in Google Scholar

[5] Ginisty, H., Sicard, H., Roger, B. and Bouvet, P. Structure and functions of nucleolin. J. Cell Sci. 112 (1999) 761–772. Search in Google Scholar

[6] Bouvet, P., Diaz, J.-J., Kindbeiter, K., Madjar, J.-J. and Amalric, F. Nucleolin interacts with several ribosomal proteins through its RGG domain. J. Biol. Chem. 273 (1998) 19025–19029. http://dx.doi.org/10.1074/jbc.273.30.1902510.1074/jbc.273.30.19025Search in Google Scholar

[7] Ghisolfis, L., Amalric, G.J.F. and Erard, M. The glycine-rich domain of nucleolin has an unusual super secondary structure responsible for its RNAhelix-destabilizing properties. J. Biol. Chem. 267 (1992) 2955–2959. Search in Google Scholar

[8] Ginisty, H., Amalric, F. and Bouvet, P. Nucleolin functions in the first step of ribosomal RNA processing. EMBO J. 17 (1998) 1476–1486. http://dx.doi.org/10.1093/emboj/17.5.147610.1093/emboj/17.5.1476Search in Google Scholar

[9] Belenguer, P., Baldin, W., Mathieu, C., Prats, H., Bensaid, M., Bouche, G. and Amalric, F. Protein kinase NII and the regulation of rDNA transcription in mammalian cells. Nucleic Acids Res. 17 (1989) 6625–6636. http://dx.doi.org/10.1093/nar/17.16.662510.1093/nar/17.16.6625Search in Google Scholar

[10] Belenguer, P., Caizergues-Ferrer, M., Labbe, J.-C., Doree, M. and Amalric, F. Mitosis-specific phosphorylation of nucleolin by p34dc2 protein kinase. Mol. Cell. Biol. 10 (1990) 3607–3618. Search in Google Scholar

[11] Srivastava, M. and Pollard, H.B. Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J. 13 (1999) 1911–1922. 10.1096/fasebj.13.14.1911Search in Google Scholar

[12] Zhang, J., Tsaprailis, G. and Bowden, G.T. Nucleolin stabilizes Bcl-XL messenger RNA in response to UVA irradiation. Cancer Res. 68 (2008) 1046–1054. http://dx.doi.org/10.1158/0008-5472.CAN-07-192710.1158/0008-5472.CAN-07-1927Search in Google Scholar

[13] Chen, Ch.-Y., Gherzi, R., Andersen, J.S., Gaietta, G., Jurchott, K., Royer, H.-D., Mann, M. and Karin, M. Nucleolin and YB-1 are required for JNKmediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 14 (2000) 1236–1248. Search in Google Scholar

[14] Jiang, Y., Xu, X.-S. and Russell, J.E. A nucleolin-binding 3′ untranslated region element stabilizes β-globin mRNA in vivo. Mol. Cell. Biol. 26 (2006) 2419–2429. http://dx.doi.org/10.1128/MCB.26.6.2419-2429.200610.1128/MCB.26.6.2419-2429.2006Search in Google Scholar

[15] Lee, P.-T., Liao, P.-C., Chang, W.-C. and Tseng, J.T. Epidermal growth factor increases the interaction between nucleolin and heterogeneous nuclear ribonucleoprotein K/Poly(C) binding protein 1 complex to regulate the gastrin mRNA turnover. Mol. Biol. Cell 18 (2007) 5004–5013. http://dx.doi.org/10.1091/mbc.E07-04-038410.1091/mbc.e07-04-0384Search in Google Scholar PubMed PubMed Central

[16] Otake, Y., Soundararajan, S., Sengupta, T.K., Kio, E.A., Smith, J.C., Pineda-Roman, M., Stuart, R.K., Spicer, E, K. and Fernandes, D.J. Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109 (2007) 3069–3075. Search in Google Scholar

[17] Rajagopalan, L.E., Westmark, C.J., Jarzembowski, J.A. and Malter, J.S. hnRNP C increases amyloid precursor protein (APP) production by stabilizing APP mRNA. Nucleic Acids Res. 26 (1998) 3418–3423. http://dx.doi.org/10.1093/nar/26.14.341810.1093/nar/26.14.3418Search in Google Scholar PubMed PubMed Central

[18] Soundararajan, S., Chen, W., Spicer, E.K., Courtenay-Luck, N. and Fernandes, D.J. The Nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 68 (2008) 2358–2365. http://dx.doi.org/10.1158/0008-5472.CAN-07-572310.1158/0008-5472.CAN-07-5723Search in Google Scholar PubMed

[19] Ishimaru, D., Zuraw, L., Ramalingam, S., Sengupta, T.K., Bandyopadhyay, S., Reuben, A., Fernandes, D.J. and Spicer, E.K. Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding factor 1 (AUF1). J. Biol. Chem. 285 (2010) 27182–27191. http://dx.doi.org/10.1074/jbc.M109.09883010.1074/jbc.M109.098830Search in Google Scholar PubMed PubMed Central

[20] Takagi, M., Absalon, M.J., McLure, K.G. and Kastan, M.B. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123 (2005) 49–63. http://dx.doi.org/10.1016/j.cell.2005.07.03410.1016/j.cell.2005.07.034Search in Google Scholar PubMed

[21] Said, E.A., Krust, B., Nisole, S., Svab, J., Briand, J.-P. and Hovanessian, A.G. The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J. Biol. Chem. 277 (2002) 37492–37502. http://dx.doi.org/10.1074/jbc.M20119420010.1074/jbc.M201194200Search in Google Scholar PubMed

[22] Sinclair, J.F. and O’Brien, A.D. Cell surface-localized nucleolin is a rukaryotic Receptor for the adhesin intimin-γ of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277 (2002) 2876–2885. http://dx.doi.org/10.1074/jbc.M11023020010.1074/jbc.M110230200Search in Google Scholar PubMed

[23] Chen, X., Kube, D.M., Cooper, M.J. and Davis, P.B. Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA. Mol. Ther. 16 (2008) 333–342. http://dx.doi.org/10.1038/sj.mt.630036510.1038/sj.mt.6300365Search in Google Scholar PubMed

[24] Christian, S., Pilch, J., Akerman, M.E., Porkka, K., Laakkonen, P. and Ruoslahti, E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. Cell Biol. 163 (2003) 871–878. http://dx.doi.org/10.1083/jcb.20030413210.1083/jcb.200304132Search in Google Scholar PubMed PubMed Central

[25] Harms, G., Kraft, R., Grelle, G., Volz, B., Dernedde, J. and Tauber R. Identification of nucleolin as a new L-selectin ligand. Biochem. J. 360 (2001) 531–538. http://dx.doi.org/10.1042/0264-6021:360053110.1042/bj3600531Search in Google Scholar

[26] Joo, E.J., ten Dam, G.B., van Kuppevelt, T.H., Toida, T., Linhardt, R.J. and Kim, Y.S. Nucleolin: acharan sulfate-binding protein on the surface of cancer cells. Glycobiology 15 (2005) 1–9. http://dx.doi.org/10.1093/glycob/cwh13210.1093/glycob/cwh132Search in Google Scholar PubMed PubMed Central

[27] Legrand, D., Vigie, K., Said, E.A., Elass, E., Masson, M., Slomianny, M.-Ch., Carpentier, M., Briand, J.-P., Mazurier, J. and Hovanessian, A.G. Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur. J. Biochem. 271 (2004) 303–317. http://dx.doi.org/10.1046/j.1432-1033.2003.03929.x10.1046/j.1432-1033.2003.03929.xSearch in Google Scholar PubMed

[28] Hoja-Łukowicz, D., Przybyło, M., Pocheć, E., Drabik, A., Silberring, J., Kremser, M., Schadendorf, D., Laidler, P. and Lityńska, A. The new face of nucleolin in human melanoma. Cancer Immunol. Immunother. 58 (2009) 1471–1480. http://dx.doi.org/10.1007/s00262-009-0705-810.1007/s00262-009-0705-8Search in Google Scholar PubMed

[29] Hovanessian, A.G., Puvion-Dutilleul, F., Nisole, S., Svab, J., Perret, E., Deng, J.-S. and Krust, B. The cell-surface-expressed nucleolin is associated with the actin cytoskeleton. Exp. Cell Res. 261 (2000) 312–328. http://dx.doi.org/10.1006/excr.2000.507110.1006/excr.2000.5071Search in Google Scholar PubMed

[30] Kusakawa, T., Shimakami, T., Kaneko, S., Yoshioka, K. and Murakami, S. Functional interaction of hepatitis C virus NS5B with nucleolin GAR domain. J. Biochem. 141 (2007) 917–927. http://dx.doi.org/10.1093/jb/mvm10210.1093/jb/mvm102Search in Google Scholar PubMed

[31] Hovanessian, A.G. Midkine, a cytokine that inhibits HIV infection by binding to the cell surface expressed nucleolin. Cell Res. 16 (2006) 174–181. http://dx.doi.org/10.1038/sj.cr.731002410.1038/sj.cr.7310024Search in Google Scholar PubMed

[32] Said, E.A., Courty, J., Svab, J., Delbe, J., Krust, B. and Hovanessian, A.G. Pleiotrophin inhibits HIV infection by binding the cellsurface-expressed nucleolin. FEBS J. 272 (2005) 4646–4659. http://dx.doi.org/10.1111/j.1742-4658.2005.04870.x10.1111/j.1742-4658.2005.04870.xSearch in Google Scholar PubMed

[33] Reyes-Reyes, E.M. and Akiyama, S.K. Cell-surface nucleolin is a signal transducing P-selectin binding protein for human colon carcinoma cells. Exp. Cell Res. 314 (2008) 2212–2223. http://dx.doi.org/10.1016/j.yexcr.2008.03.01610.1016/j.yexcr.2008.03.016Search in Google Scholar PubMed PubMed Central

[34] Hirano, K., Miki, Y., Hirai, Y., Sato, R., Itoh, T., Hayashi, A., Yamanaka, M., Eda, S. and Beppu, M. A Multifunctional shuttling protein nucleolin is a macrophage receptor for apoptotic cells. J. Biol. Chem. 280 (2005) 39284–39293. http://dx.doi.org/10.1074/jbc.M50527520010.1074/jbc.M505275200Search in Google Scholar PubMed

[35] Shi, H., Huang, Y., Zhou, H., Song, X., Yuan, S., Fu, Y. and Luo, Y. Nucleolin is a receptor that mediates anti-angiogenic and antitumor activity of endostatin. Blood 110 (2007) 2899–2906. http://dx.doi.org/10.1182/blood-2007-01-06442810.1182/blood-2007-01-064428Search in Google Scholar PubMed

[36] Carpentier, M., Morelle, W., Coddeville, B., Pons, A., Masson, M., Mazurier, J. and Legrand, D. Nucleolin undergoes partial N- and O- glycosylations in the extranuclear cell compartment. Biochemistry 44 (2005) 5804–5815. http://dx.doi.org/10.1021/bi047831s10.1021/bi047831sSearch in Google Scholar PubMed

[37] Aldi, S., Giovampaola, C.D., Focarelli, R., Armini, A., Ziche, M., Finetti, F. and Rosati, F. A fucose-containing O-glycoepitope on bovine and human nucleolin. Glycobiology 19 (2009) 337–343. http://dx.doi.org/10.1093/glycob/cwn12610.1093/glycob/cwn126Search in Google Scholar PubMed

[38] Hoja-Łukowicz, D., Lityńska, A., Pocheć, E., Przybyło, M., Kremser, E., Ciołczyk-Wierzbicka, D. and Laidler, P. Identification of PNA-positive proteins in the primary uveal melanoma cell line by mass spectrometry. Acta Biol. Cracov. Seria Zool. 47 (2006) 27–33. Search in Google Scholar

[39] Watanabe, T., Tsuge, H., Imagawa, T., Kise, D., Hirano, K., Beppu, M., Takahashi, A., Yamaguchi, K., Fujiki, H. and Suganuma M. Nucleolin as cell surface receptor for tumor necrosis factor-alpha inducing protein: a carcinogenic factor of Helicobacter pylori. J. Cancer Res. Clin. Oncol. 136 (2010) 911–921. http://dx.doi.org/10.1007/s00432-009-0733-y10.1007/s00432-009-0733-ySearch in Google Scholar PubMed

[40] Görelik, E., Galili, U. and Raz, A. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 20 (2001) 245–277. http://dx.doi.org/10.1023/A:101553542759710.1023/A:1015535427597Search in Google Scholar

[41] Voss, P.G., Haudek, K.C., Patterson, R.J. and Wang, J.L. Inhibition of cellfree splicing by saccharides that bind galectins and SR proteins. J. Carbohydr. Chem. 31 (2012) 519–534. http://dx.doi.org/10.1080/07328303.2012.66668810.1080/07328303.2012.666688Search in Google Scholar

[42] Chen, Ch.-M., Chiang, S.-Y. and Yeh, N.-H. Increased stability of nucleolin in proliferating cells by inhibition of its self-cleaving activity. J. Biol. Chem. 266 (1991) 7754–7758. Search in Google Scholar

[43] Fang, S.H. and Yeh, N.H. The self-cleaving activity of nucleolin determines its molecular dynamics in relation to cell proliferation. Exp. Cell Res. 208 (1993) 48–53. http://dx.doi.org/10.1006/excr.1993.122110.1006/excr.1993.1221Search in Google Scholar PubMed

[44] Lee, N., Wang, W.-Ch. and Fukuda, M. Granulocytic differentiation of HL-60 cells is associated with increase of poly-N-acetyllactosamine in Asn-linked oligosaccharides attached to human lysosomal membrane glycoproteins. J. Biol. Chem. 265 (1990) 20476–20487. Search in Google Scholar

[45] Yan, L., Wilkins, P.P., Alvarez-Manilla, G., Do, S.-I., Smith, D.F. and Cummings, R.D. Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Lex determinant. Glycoconj. J. 14 (1997) 45–55. http://dx.doi.org/10.1023/A:101850891455110.1023/A:1018508914551Search in Google Scholar

[46] Hoja-Łukowicz, D., Link-Lenczowski, P., Carpentieri, A., Amoresano, A., Pocheć, E., Artemenko, K.A., Bergquist, J. and Lityńska, A. L1CAM from human melanoma carries a novel type of N-glycan with Galβ1-4Galβ1-motif. Involvement of N-linked glycans in migratory and invasive behaviour of melanoma cells. Glycoconj. J. 30 (2013) 205–225. http://dx.doi.org/10.1007/s10719-012-9374-510.1007/s10719-012-9374-5Search in Google Scholar PubMed PubMed Central

[47] Caizergues-Ferrer, M., Belenguer, P., Lapeyre, B., Amalric, F., Wallace, M.O. and Olson, M.O.J. Phosphorylation of nucleolin by a nucleolar type NII protein kinase. Biochemistry 26 (1987) 7876–7883. http://dx.doi.org/10.1021/bi00398a05110.1021/bi00398a051Search in Google Scholar PubMed

[48] Tediose, T., Kolev, M., Sivasankar, B., Brennan, P., Morgan, B.P. and Donev, R. Interplay between REST and nucleolin transcription factors: a key mechanism in the overexpression of genes upon increased phosphorylation. Nucleic Acids Res. 38 (2010) 2799–2812. http://dx.doi.org/10.1093/nar/gkq01310.1093/nar/gkq013Search in Google Scholar PubMed PubMed Central

[49] Garcia, M.C., Williams, J., Johnson, K., Olden, K. and Roberts, J.D. Arachidonic acid stimulates formation of a novel complex containing nucleolin and RhoA. FEBS Lett. 585 (2011) 618–622. http://dx.doi.org/10.1016/j.febslet.2011.01.03510.1016/j.febslet.2011.01.035Search in Google Scholar

[50] Warrener, P. and Petryshyn, R. Phosphorylation and proteolytic degradation of nucleolin from 3T3-F442A cells. Biochem. Biophys. Res. Commun. 180 (1991) 716–723. http://dx.doi.org/10.1016/S0006-291X(05)81124-610.1016/S0006-291X(05)81124-6Search in Google Scholar

[51] Bourbon, H., Bugler, B., Caizergues-Ferrer, M. and Amalric, F. Role of phosphorylation on the maturation pathways of a 100 kDa nucleolar protein. FEBS Lett. 155 (1983) 218–222. http://dx.doi.org/10.1016/0014-5793(82)80606-610.1016/0014-5793(82)80606-6Search in Google Scholar

[52] Semba, S., Mizuuchi, E. and Yokozaki, H. Requirement of phosphatase of regenerating liver-3 for the nucleolar localization of nucleolin during the progression of colorectal carcinoma. Cancer Sci. 1012 (2010) 254–226. Search in Google Scholar

[53] Losfeld, M.-E., Khoury, D.E., Mariot, P., Carpentier, M., Krust, B., Briand, J.-P., Mazurier, J., Hovanessian, A.G. and Legrand, D. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells. Exp. Cell Res. 315 (2009) 357–369. http://dx.doi.org/10.1016/j.yexcr.2008.10.03910.1016/j.yexcr.2008.10.039Search in Google Scholar

[54] Losfeld, M.-E., Leroy, A., Coddeville, B., Carpentier, M., Mazurier, J. and Legrand, D. N-glycosylation influences the structure and self-association abilities of recombinant nucleolin. FEBS J. 278 (2011) 2552–2564. http://dx.doi.org/10.1111/j.1742-4658.2011.08180.x10.1111/j.1742-4658.2011.08180.xSearch in Google Scholar

[55] Agrwal, N., Wang, J.L. and Voss, P.G. Carbohydrate-binding Protein 35. J. Biol. Chem. 264 (1989) 17236–17242. Search in Google Scholar

[56] Paces-Fessy, M., Boucher, D., Petit, E., Paute-Briand, S. and Blanchet-Tournier, M.-F. The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem. J. 378 (2004) 353–362. http://dx.doi.org/10.1042/BJ2003078610.1042/bj20030786Search in Google Scholar

[57] Haudek, K.C., Spronk, K.J., Voss, P.G., Patterson, R.J., Wang, J.L. and Arnoys, E.J. Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim. Biophys. Acta 1800 (2010) 181–189. http://dx.doi.org/10.1016/j.bbagen.2009.07.00510.1016/j.bbagen.2009.07.005Search in Google Scholar

[58] Mehul, B., Bawumia, S. and Hughes, R.C. Cross-linking of galectin 3, a galactose-binding protein of mammalian cells, by tissue-type transglutaminase. FEBS Lett. 360 (1995) 160–164. http://dx.doi.org/10.1016/0014-5793(95)00100-N10.1016/0014-5793(95)00100-NSearch in Google Scholar

[59] Ahmad, N., Gabius, H.J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B., Macaluso, F. and Brewer, C.F. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem. 279 (2004) 10841–10847. http://dx.doi.org/10.1074/jbc.M31283420010.1074/jbc.M312834200Search in Google Scholar PubMed

[60] Lajoie, P., Goetz, J.G., Dennis, J.W. and Nabi, I.R. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J. Cell Biol. 185 (2009) 381–385. http://dx.doi.org/10.1083/jcb.20081105910.1083/jcb.200811059Search in Google Scholar PubMed PubMed Central

Published Online: 2014-9-12
Published in Print: 2014-9-1

© 2014 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0206-4/html
Scroll to top button