Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 12, 2014

Expression profiles uncover the relationship between erythropoietin and cell proliferation in rat hepatocytes after a partial hepatectomy

  • Jihong Zhang EMAIL logo , Yajuan Yang , Tingting He , Yunqing Liu , Yun Zhou , Yongkang Chen and Cunshuan Xu

Abstract

Erythropoietin (EPO) has a beneficial effect on hepatic cell proliferation during liver regeneration. However, the underlying mechanism has not yet been elucidated. To uncover the proliferation response of EPO in rat liver regeneration after partial hepatectomy (PH) at the cellular level, hepatocytes (HCs) were isolated using Percoll density gradient centrifugation. The genes of the EPO-mediated signaling pathway and the target genes of the transcription factor (TF) in the pathway were identified in a pathway and TF database search. Their expression profiles were then detected using Rat Genome 230 2.0 Microarray. The results indicated that the EPO-mediated signaling pathway is involved in 19 paths and that 124 genes participate, of which 32 showed significant changes and could be identified as liver regeneration-related genes. In addition, 443 targets regulated by the TFs of the pathway and 60 genes associated with cell proliferation were contained in the array. Subsequently, the synergetic effect of these genes in liver regeneration was analyzed using the E(t) mathematical model based on their expression profiles. The results demonstrated that the E(t) values of paths 3, 8, 12 and 14–17 were significantly strengthened in the progressing phase of liver regeneration through the RAS/MEK/ERK or PI3K/AκT pathways. The synergetic effect of the target genes, in parallel with target-related cell proliferation, was also enhanced 12–72 h after PH, suggesting a potential positive effect of EPO on HC proliferation during rat liver regeneration. These data imply that the EPO receptor may allow EPO to promote HC proliferation through paths 3, 8, 12 and 14–17, mediating the RAS/MEK/ERK and PI3K/AκT pathways in rat liver regeneration after PH.

[1] Taub, R. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell. Biol. 5 (2004) 836–847. http://dx.doi.org/10.1038/nrm148910.1038/nrm1489Search in Google Scholar

[2] Michalopoulos, G.K. Liver regenetation. J. Cell Physiol. 213 (2007) 286–300. http://dx.doi.org/10.1002/jcp.2117210.1002/jcp.21172Search in Google Scholar

[3] Staudinger, J.L. and LIchti, K. Cell signaling and nuclear receptors: new opportunities for molecular pharmaceuticals in liver disease. Mol. Pharm. 5 (2008) 17–34. http://dx.doi.org/10.1021/mp700098c10.1021/mp700098cSearch in Google Scholar

[4] Sun, Y., Deng, X., Li, W., Yan, Y., Wei, H., Jiang, Y. and He, F. Liver proteome analysis of adaptive response in rat immediately after partial hepatectomy. Proteomics 7 (2007) 4398–4407. http://dx.doi.org/10.1002/pmic.20060091310.1002/pmic.200600913Search in Google Scholar

[5] Jarnagin, W.R., Gonen, M., Fong, Y., DeMatteo, R.P., Ben-Porat, L., Little, S., Corvera, C., Weber, S. and Blumgart, L.H. Improvement in perioperative outcome after hepatic resection: analysis of 1803 consecutive cases over the past decade. Ann. Surg. 236 (2002) 397–406. http://dx.doi.org/10.1097/00000658-200210000-0000110.1097/00000658-200210000-00001Search in Google Scholar

[6] Belghiti, J., Hiramatsu, K., Benoist, S., Massault, P., Sauvanet, A. and Farges, O. Seven hundred forty-seven hepatectomies in the 1990s: an update to evaluate the actual risk of liver resection. J. Am. Coll. Surg. 191 (2000) 38–46. http://dx.doi.org/10.1016/S1072-7515(00)00261-110.1016/S1072-7515(00)00261-1Search in Google Scholar

[7] Garcea, G. and Maddern, G.J. Liver failure after major hepatic resection. J. Hepatobiliary Pancreat. Surg. 16 (2009) 145–155. http://dx.doi.org/10.1007/s00534-008-0017-y10.1007/s00534-008-0017-ySearch in Google Scholar PubMed

[8] Coleman, T. and Brines, M. Science review: recombinant human erythropoietin in critical illness: a role beyond anemia? Crit. Care 8 (2004) 337–341. http://dx.doi.org/10.1186/cc289710.1186/cc2897Search in Google Scholar PubMed PubMed Central

[9] Farrell, F. and Lee, A. The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist S5 (2004) 18–30. http://dx.doi.org/10.1634/theoncologist.9-90005-1810.1634/theoncologist.9-90005-18Search in Google Scholar PubMed

[10] Drüeke, T.B., Locatelli, F., Clyne, N., Eckardt, K.U., Macdougall, I.C., Tsakiris, D., Burger, H.U. and Scherhag, A. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355 (2006) 2071–2084. http://dx.doi.org/10.1056/NEJMoa06227610.1056/NEJMoa062276Search in Google Scholar PubMed

[11] Siebert, N., Xu, W., Grambow, E., Zechner, D. and Vollmar, B. Erythropoietin improves skin wound healing and activates the TGF-β signaling pathway. Lab. Invest. 91 (2011) 1753–1765. http://dx.doi.org/10.1038/labinvest.2011.12510.1038/labinvest.2011.125Search in Google Scholar PubMed

[12] Liu, N., Tian, J., Wang, W., Cheng, J., Hu, D. and Zhang, J. Effect and mechanism of erythropoietin on mesenchymal stem cell proliferation in vitro under the acute kidney injury microenvironment. Exp. Biol. Med. 236 (2011) 1093–1099. http://dx.doi.org/10.1258/ebm.2011.01100110.1258/ebm.2011.011001Search in Google Scholar PubMed

[13] Sakanaka, M., Wen, T.C., Matsuda, S., Masuda, S., Morishita, E., Nagao, M. and Sasaki, R. In vivo evidence that erythropoetin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. USA 95 (1998) 4635–4640. http://dx.doi.org/10.1073/pnas.95.8.463510.1073/pnas.95.8.4635Search in Google Scholar PubMed PubMed Central

[14] Xi, J.Q., Meng, X.K., Zhang, J.J. and Zhang, M. Erythropoletin promotes hepatic regeneration after partial hepatectomy in rats. Chin. J. Clinicians 5 (2011) 967–970. Search in Google Scholar

[15] Schmeding, M., Neumann, U.P., Boas-Knoop, S., Spinelli, A. and Neuhaus, P. Erythropoietin reduces ischemia-reperfusion injury in the rat liver. Eur. Surg. Res. 39 (2007) 189–197. http://dx.doi.org/10.1159/00010100910.1159/000101009Search in Google Scholar PubMed

[16] Schmeding, M., Hunold, G., Ariyakhagorn, V., Rademacher, S., Boas-Knoop, S., Lippert, S., Neuhaus, P. and Neumann, U.P. Erythropoietin reduces ischemia-reperfusion injury after liver transplantation in rats. Transpl. Int. 22 (2009) 738–746. http://dx.doi.org/10.1111/j.1432-2277.2009.00861.x10.1111/j.1432-2277.2009.00861.xSearch in Google Scholar PubMed

[17] Bockhorn, M., Fingas, C.D., Rauen, U., Canbay, A., Sotiropoulos, G.C., Frey, U., Sheu, S.Y., Wohlschläger, J., Broelsch, C.E. and Schlaak, J.F. Erythropoietin treatment improves liver regeneration and survival in rat models of extended liver resection and living donor liver transplantation. Transplantation 86 (2008) 1578–1585. http://dx.doi.org/10.1097/TP.0b013e31818b22b410.1097/TP.0b013e31818b22b4Search in Google Scholar PubMed

[18] Bader, A., Pavlica, S., Deiwick, A., Lotkova, H., Kucera, O., Darsow, K., Bartel, S., Schulze, M., Lange, H.A. and Cervinkova, Z. Proteomic analysis to display the effect of low doses of erythropoietin on rat liver regeneration. Life Sci. 89 (2011) 827–833. http://dx.doi.org/10.1016/j.lfs.2011.08.00210.1016/j.lfs.2011.08.002Search in Google Scholar PubMed

[19] Greif, F., Ben-Ari, Z., Taya, R., Pappo, O., Kurtzwald, E., Cheporko, Y., Ravid, A. and Hochhauser, E. Dual effect of erythropoietin on liver protection and regeneration after subtotal hepatectomy in rats. Liver Transpl. 16 (2010) 631–638. Search in Google Scholar

[20] Vassiliou, I., Lolis, E., Nastos, C., Tympa, A., Theodosopoulos, T., Dafnios, N., Fragulidis, G., Frangou, M., Kondi-Pafiti, A. and Smyrniotis, V. The combined effect of erythropoietin and granulocyte macrophage colony stimulating factor on liver regeneration after major hepatectomy in rats. World J. Surg. Oncol. 8 (2010) 57. http://dx.doi.org/10.1186/1477-7819-8-5710.1186/1477-7819-8-57Search in Google Scholar PubMed PubMed Central

[21] Naughton, B.A., Kaplan, S.M., Roy, M., Burdowski, A.J., Gordon, A.S. and Piliero, S.J. Hepatic regeneration and erythropoietin production in the rat. Science 196 (1977) 301–302. http://dx.doi.org/10.1126/science.84747110.1126/science.847471Search in Google Scholar PubMed

[22] Klemm, K., Eipel, C., Cantré, D., Abshagen, K., Menger, M.D. and Vollmar, B. Multiple doses of erythropoietin impair liver regeneration by increasing TNF-alpha, the Bax to Bcl-xL ratio and apoptotic cell death. PLoS One 3 (2008) e3924. http://dx.doi.org/10.1371/journal.pone.000392410.1371/journal.pone.0003924Search in Google Scholar PubMed PubMed Central

[23] Higgins, G.M. and Anderson, R.M. Experimental pathology of the liver: restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12 (1931) 186–202. Search in Google Scholar

[24] Xu, C., Yang, Y., Yang, J., Chen, X. and Wang, G. Analysis of the role of the integrin signaling pathway in hepatocytes during rat liver regeneration. Cell. Mol. Biol. Lett. 17 (2012) 274–288. http://dx.doi.org/10.2478/s11658-012-0011-x10.2478/s11658-012-0011-xSearch in Google Scholar PubMed PubMed Central

[25] Xu, C.S., Chang, C.F., Yuan, J.Y., Li, W.Q., Han, H.P., Yang, K.J., Zhao, L.F., Li, Y.C., Zhang, H.Y., Rahman, S. and Zhang, J.B. Expressed genes in regenerating rat liver after partial hepatectomy. World J. Gastroenterol. 11 (2005) 2932–2940. Search in Google Scholar

[26] Knepp, J.H., Geahr, M.A., Forman, M.S. and Valsamakis, A. Comparison of automated and manual nucleic acid extraction methods for detection of enterovirus RNA. J. Clin. Microbiol. 41 (2003) 3532–3536. http://dx.doi.org/10.1128/JCM.41.8.3532-3536.200310.1128/JCM.41.8.3532-3536.2003Search in Google Scholar PubMed PubMed Central

[27] Mulrane, L., Rexhepaj, E., Smart, V., Callanan, J.J., Orhan, D., Eldem, T., Mally, A., Schroeder, S., Meyer, K., Wendt, M., O’Shea, D. and Gallagher, W.M. Creation of a digital slide and tissue microarray resource from a multiinstitutional predictive toxicology study in the rat: an initial report from the PredTox group. Exp. Toxicol. Pathol. 60 (2008) 235–245. http://dx.doi.org/10.1016/j.etp.2007.12.00410.1016/j.etp.2007.12.004Search in Google Scholar PubMed

[28] Nikitin, A., Egorov, S., Daraselia, N. and Mazo, I. Pathway studio-the analysis and navigation of molecular networks. Bioinformatics 19 (2003) 2155–2157. http://dx.doi.org/10.1093/bioinformatics/btg29010.1093/bioinformatics/btg290Search in Google Scholar PubMed

[29] Wang, G.P. and Xu, C.S. Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol. Biotechnol. 46 (2010) 49–57. http://dx.doi.org/10.1007/s12033-010-9274-510.1007/s12033-010-9274-5Search in Google Scholar PubMed

[30] Chalmers, J.J., Zborowski, M., Sun, L. and Moore, L. Flow through, immunomagnetic cell separation. Biotechnol. Prog. 14 (1998) 141–148. http://dx.doi.org/10.1021/bp970140l10.1021/bp970140lSearch in Google Scholar PubMed

[31] Doniger, S.W., Salomonis, N., Dahlquist, K.D., Vranizan, K., Lawlor, S.C. and Conklin, B.R. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4 (2003) R7. http://dx.doi.org/10.1186/gb-2003-4-1-r710.1186/gb-2003-4-1-r7Search in Google Scholar PubMed PubMed Central

[32] Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H. and Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27 (1999) 29–34. http://dx.doi.org/10.1093/nar/27.1.2910.1093/nar/27.1.29Search in Google Scholar PubMed PubMed Central

[33] Zhang, J., Ma, C., Liu, Y., Yang, G., Jiang, Y., Xu, C. Interleukin 18 accelerates the hepatic cell proliferation in rat liver regeneration after partial hepatectomy. Gene 537 (2014) 230–237. http://dx.doi.org/10.1016/j.gene.2013.12.06210.1016/j.gene.2013.12.062Search in Google Scholar PubMed

[34] Xu, C.S., Jiang, Y., Zhang, L.X., Chang, C.F., Wang, G.P., Shi, R.J. and Yang, Y.J. The role of Kupffer cells in rat liver regeneration revealed by cell-specific microarray analysis. J. Cell Biochem. 113 (2012) 229–237. http://dx.doi.org/10.1002/jcb.2334810.1002/jcb.23348Search in Google Scholar PubMed

[35] Xu, C., Chen, X., Chang, C., Wang, G., Wang, W., Zhang, L., Zhu, Q. and Wang, L. Characterization of transcriptional profiling of Kupffer cells during liver regeneration in rats. Cell Biol. Int. 36 (2012) 721–732. http://dx.doi.org/10.1042/CBI2011010410.1042/CBI20110104Search in Google Scholar PubMed

[36] Jiang, Y., Zhang, L.X., Chang, C.F., Wang, G.P., Shi, R.J., Yang, Y.J. and Xu, C.S. The number of the genes in a functional category matters during rat liver regeneration after partial hepatectomy. J. Cell Biochem. 112 (2011) 3194–3205. http://dx.doi.org/10.1002/jcb.2324610.1002/jcb.23246Search in Google Scholar PubMed

[37] Xu, C.S., Chen, X.G., Chang, C.F., Wang, G.P., Wang, W.B., Zhang, L.X., Zhu, Q.S. and Wang, L. Analysis of time-course gene expression profiles of sinusoidal endothelial cells during liver regeneration in rats. Mol. Cell Biochem. 350 (2011) 215–227. http://dx.doi.org/10.1007/s11010-010-0701-510.1007/s11010-010-0701-5Search in Google Scholar PubMed

[38] Xu, C., Chen, X., Chang, C., Wang, G., Wang, W., Zhang, L., Zhu, Q. and Wang, L. Genome-wide analysis of gene expression in dendritic cells from rat regenerating liver after partial hepatectomy. Cell Biochem. Funct. 29 (2011) 255–264. http://dx.doi.org/10.1002/cbf.174810.1002/cbf.1748Search in Google Scholar PubMed

[39] Xu, C., Chen, X., Chang, C., Wang, G., Wang, W., Zhang, L., Zhu, Q., Wang, L. and Zhang, F. Transcriptome analysis of hepatocytes after partial hepatectomy in rats. Dev. Genes Evol. 220 (2010) 263–274. http://dx.doi.org/10.1007/s00427-010-0345-110.1007/s00427-010-0345-1Search in Google Scholar PubMed

[40] Christ, B. and Pelz, S. (2013) Implication of hepatic stem cells in functional liver repopulation. Cytometry A 83 (1999) 90–102. Search in Google Scholar

[41] Chen, X., Xu, C., Zhang, F. and Ma, J. Microarray approach reveals the relevance of interferon signaling pathways with rat liver restoration post 2/3 hepatectomy at cellular level. J. Interferon Cytokine Res. 30 (2010) 525–539. http://dx.doi.org/10.1089/jir.2009.011110.1089/jir.2009.0111Search in Google Scholar PubMed

[42] Ogiso, T., Nagaki, M., Takai, S., Tsukada, Y., Mukai, T., Kimura, K. and Moriwaki, H. Granulocyte colony-stimulating factor impairs liver regeneration in mice through the up-regulation of interleukin-1beta. J. Hepatol. 47 (2007) 816–825. http://dx.doi.org/10.1016/j.jhep.2007.06.01710.1016/j.jhep.2007.06.017Search in Google Scholar PubMed

[43] Koury, S.T., Bondurant, M.C., Koury, M.J., Semenza, G.L. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77 (1991) 2497–2503. Search in Google Scholar

[44] Rankin, E.B., Biju, M.P., Liu, Q., Unger, T.L., Rha, J., Johnson, R.S., Simon, M.C., Keith, B. and Haase, V.H. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 117 (2007) 1068–1077. http://dx.doi.org/10.1172/JCI3011710.1172/JCI30117Search in Google Scholar PubMed PubMed Central

[45] Rychtrmoc, D., Hubálková, L., Víšková, A., Libra, A., Bunček, M. and Červinková, Z. Transcriptome temporal and functional analysis of liver regeneration termination. Physiol. Res. 61 (2012) S77–92. 10.33549/physiolres.932393Search in Google Scholar PubMed

[46] Dransfeld, O., Gehrmann, T., Köhrer, K., Kircheis, G., Holneicher, C., Häussinger, D. and Wettstein, M. Oligonucleotide microarray analysis of differential transporter regulation in the regenerating rat liver. Liver Int. 25 (2005) 1243–1258. http://dx.doi.org/10.1111/j.1478-3231.2005.01158.x10.1111/j.1478-3231.2005.01158.xSearch in Google Scholar PubMed

[47] Fukuhara, Y., Hirasawa, A., Li, X.K., Kawasaki, M., Fujino, M., Funeshima, N., Katsuma, S., Shiojima, S., Yamada, M., Okuyama, T., Suzuki, S. and Tsujimoto, G. Gene expression profile in the regenerating rat liver after partial hepatectomy. J. Hepatol. 38 (2003) 784–792. http://dx.doi.org/10.1016/S0168-8278(03)00077-110.1016/S0168-8278(03)00077-1Search in Google Scholar

[48] Li M.H., Zhou X.C., Mei J.X., Geng X.F., Zhou Y., Zhang W.M., Xu C.S. Study on the activity of the signaling pathways regulating hepatocytes from G0 phase into G1 phase during rat liver regeneration. Cell. Mol. Biol. Lett. DOI: 10.2478/s11658-014-0188-2. 10.2478/s11658-014-0188-2Search in Google Scholar PubMed PubMed Central

[49] Kesselring, F., Spicher, K. and Porzig, H. Changes in G protein pattern and in G protein-dependent signaling during erythropoietin- and dimethylsulfoxide-induced differentiation of murine erythroleukemia cells. Blood 84 (1994) 4088–4098. Search in Google Scholar

[50] Guillard, C., Chrétien, S., Pelus, A.S., Porteu, F., Muller, O., Mayeux, P. and Duprez, V. Activation of the mitogen-activated protein kinases Erk1/2 by erythropoietin receptor via a G(i)protein beta gamma-subunit-initiated pathway. J. Biol. Chem. 278 (2003) 11050–11056. http://dx.doi.org/10.1074/jbc.M20883420010.1074/jbc.M208834200Search in Google Scholar PubMed

[51] Zhao, W., Kitidis, C., Fleming, M.D., Lodish, H.F. and Ghaffari, S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107 (2006) 907–915. http://dx.doi.org/10.1182/blood-2005-06-251610.1182/blood-2005-06-2516Search in Google Scholar PubMed PubMed Central

Published Online: 2014-9-12
Published in Print: 2014-9-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0198-0/html
Scroll to top button