Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 27, 2013

Molecular cloning and characterization of a novel anti-TLR9 intrabody

  • Elisa Reimer EMAIL logo , Stefan Somplatzki , Diana Zegenhagen , Svenja Hänel , Alina Fels , Thorsten Bollhorst , Ludger Hovest , Stefan Bauer , Carsten Kirschning and Thomas Böldicke

Abstract

Toll-like receptor 9 (TLR9) is a component of the innate immune system, which recognizes the DNA of both pathogens and hosts. Thus, it can drive autoimmune diseases. Intracellular antibodies expressed inside the ER block transitory protein functions by inhibiting the translocation of the protein from the ER to its subcellular destination. Here, we describe the construction and characterization of an anti-TLR9 ER intrabody (αT9ib). The respective single-chain Fv comprises the variable domains of the heavy and light chain of a monoclonal antibody (mAb; 5G5) towards human and murine TLR9. Co-expression of αT9ib and mouse TLR9 in HEK293 cells resulted in co-localization of both molecules with the ER marker calnexin. Co-immunoprecipitation of mouse TLR9 with αT9ib indicated that αT9ib interacts with its cognate antigen. The expression of αT9ib inhibited NF-κB-driven reporter gene activation upon CpG DNA challenge but not the activation of TLR3 or TLR4. Consequently, TLR9-driven TNFα production was inhibited in RAW264.7 macrophages upon transfection with the αT9ib expression plasmid. The αT9ib-encoding open reading frame was integrated into an adenoviral cosmid vector to produce the recombinant adenovirus (AdV)-αT9ib. Transduction with AdVαT9ib specifically inhibited TLR9-driven cellular TNFα release. These data strongly indicate that αT9ib is a very promising experimental tool to block TLR9 signaling.

[1] Akira, S., Uematsu, S. and Takeuchi, O. Pathogen recognition and innate immunity. Cell 124 (2006) 783–801. http://dx.doi.org/10.1016/j.cell.2006.02.01510.1016/j.cell.2006.02.015Search in Google Scholar

[2] Kawai, T. and Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11 (2010) 373–384. http://dx.doi.org/10.1038/ni.186310.1038/ni.1863Search in Google Scholar

[3] Lee, B.L., Moon, J.E., Shu, J.H., Yuan L., Newman, Z.R., Schekman, R. and Barton G.M. UNC93B1 mediates differential trafficking of endosomal TLRs. eLife. 00291. Search in Google Scholar

[4] Latz, E., Schoenemeyer, A., Visintin, A., Fitzgerald, K.A., Monks, B.G., Knetter, C.F., Lien, E., Nilsen, N.J., Espevik, T. and Golenbock, D.T. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5 (2004) 190–198. http://dx.doi.org/10.1038/ni102810.1038/ni1028Search in Google Scholar

[5] Trivedi, S. and Greidinger, E.L. Endosomal Toll-like receptors in autoimmunity: mechanisms for clinical diversity. Therapy 6 (2009) 433–442. http://dx.doi.org/10.2217/thy.09.210.2217/thy.09.2Search in Google Scholar

[6] Celhar, T., Magalhaes, R., and Fairhust, A.-M. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol. Res. 53 (2012) 58–77. http://dx.doi.org/10.1007/s12026-012-8270-110.1007/s12026-012-8270-1Search in Google Scholar

[7] Zeuner, R.A., Verthelyi, D., Gursel, M., Ishii, K.J. and Klinman, D.M. Influence of stimulatory and suppressive DNA motifs on host susceptibility to inflammatory arthritis. Arthritis Rheum. 48 (2003) 1701–1707. http://dx.doi.org/10.1002/art.1103510.1002/art.11035Search in Google Scholar

[8] O’Neill, L.A.J. Primer: Toll-like receptor signaling pathways-what do rheumatologists need to know? Nat. Clin. Pract. Rheumatol. 4 (2008) 319–327. http://dx.doi.org/10.1038/ncprheum080210.1038/ncprheum0802Search in Google Scholar

[9] Daubeuf, B., Mathison, J., Spiller, S., Hugues, S., Herren, S., Ferlin, W., Kosco-Vilbois, M., Wagner, H., Kirschning, C.J., Ulevitch, R. and Elson, G. TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock. J. Immunol. 179 (2007) 6107–6114. Search in Google Scholar

[10] Meng, G., Rutz, M., Schiemann, M., Metzger, J., Grabiec, A., Schwandner, R., Luppa, P.B., Ebel, F., Busch, D.H., Bauer, S., Wagner, H. and Kirschning, C.J. Antagonistic antibody prevents toll-like receptor 2-driven lethal shock-like syndromes. J. Clin. Invest. 113 (2004) 1473–1481. Search in Google Scholar

[11] Vanags, D., Williams, B., Johnson, B., Hall, S., Nash, P., Taylor, A., Weiss, J. and Feeney, D. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomized trial. Lancet 368 (2006) 855–863. http://dx.doi.org/10.1016/S0140-6736(06)69210-610.1016/S0140-6736(06)69210-6Search in Google Scholar

[12] Hennessy, E.J., Parker, A.E. and O’Neill, L.A.J. Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug. Discov. 9 (2010) 293–307. http://dx.doi.org/10.1038/nrd320310.1038/nrd3203Search in Google Scholar PubMed

[13] Kuznik, A., Bencina, M., Svajger, U., Jeras, M. and Rozman, B. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 186 (2011) 4794–4804. http://dx.doi.org/10.4049/jimmunol.100070210.4049/jimmunol.1000702Search in Google Scholar PubMed

[14] Klinman, D.M., Zeuner, R., Yamada, H., Gursel, M., Currie, D. and Gursul, I. Regulation of CpG-induced immune activation by suppressive oligodeoxynucleotides. Ann. NY Acad. Sci. 1002 (2003) 112–123. http://dx.doi.org/10.1196/annals.1281.02310.1196/annals.1281.023Search in Google Scholar

[15] Barrat, F.J., Meeker, T., Chan, J.H., Guiducci, C. and Coffman, R.L. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 37 (2007) 3582–3586. http://dx.doi.org/10.1002/eji.20073781510.1002/eji.200737815Search in Google Scholar

[16] Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6 (2006) 823–835. http://dx.doi.org/10.1038/nri195710.1038/nri1957Search in Google Scholar

[17] Graham, K.L., Lee, L.Y., Higgens, J.P., Steinmann, L., Utz, P.J. and Ho, P.P. Treatment with a toll-like receptor inhibitory CpG oligonucleotide delays and attenuates lupus nephritis in NZB/W mice. Autoimmunity 43 (2010) 140–155. http://dx.doi.org/10.3109/0891693090322923910.3109/08916930903229239Search in Google Scholar

[18] Böldicke, T. Blocking translocation of cell surface molecules from the ER to the cell surface by intracellular antibodies targeted to the ER. J. Cell Mol. Med. 11 (2007) 54–70. http://dx.doi.org/10.1111/j.1582-4934.2007.00002.x10.1111/j.1582-4934.2007.00002.xSearch in Google Scholar

[19] Böldicke, T., Somplatzki, S., Sergeev, G. and Mueller, P.P. Functional inhibition of transitory proteins by intrabody-mediated retention in the endoplasmatic reticulum. Methods 56 (2012) 338–350. http://dx.doi.org/10.1016/j.ymeth.2011.10.00810.1016/j.ymeth.2011.10.008Search in Google Scholar

[20] Bilanges, B. and Stokoe, D. Direct comparison of the specificity of gene silencing using antisense oligonucleotides and RNAi. Biochem. J. 388 (2005) 573–583. http://dx.doi.org/10.1042/BJ2004195610.1042/BJ20041956Search in Google Scholar

[21] Qiu, S., Adema, C.M. and Lane, T. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 33 (2005) 1834–1847. http://dx.doi.org/10.1093/nar/gki32410.1093/nar/gki324Search in Google Scholar

[22] Cao, T. and Heng, B.C. Intracellular antibodies (intrabodies) versus RNA interference for therapeutic applications. Ann. Clin. Lab. Sci. 35 (2005) 227–229. Search in Google Scholar

[23] Kirschning, C.J., Dreher, S., Maaß, B., Fichte, S., Schade, J., Köster, M., Noack, A., Lindenmaier, W., Wagner, H. and Böldicke, T. Generation of anti-TLR2 intrabody mediating inhibition of macrophage surface TLR2 expression and TLR2-driven cell activation. BMC Biotechnol. 10 (2010) 31. http://dx.doi.org/10.1186/1472-6750-10-3110.1186/1472-6750-10-31Search in Google Scholar

[24] Ahmad-Nejad, P., Häcker, H., Rutz, M., Bauer, S., Vabulas, R.M. and Wagner, H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32 (2002) 1958–1968. http://dx.doi.org/10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-USearch in Google Scholar

[25] Böldicke, T., Weber, H., Mueller, P.P., Barleon, B. and Bernal, M. Novel highly efficient intrabody mediates complete inhibition of cell surface expression of the human vascular endothelial growth factor receptor-2 (VEGFR-2/KDR). J. Immunol. Meth. 300 (2005) 146–159. http://dx.doi.org/10.1016/j.jim.2005.03.00710.1016/j.jim.2005.03.007Search in Google Scholar PubMed

[26] Böldicke, T., Tesar, M., Griesel, C., Rohde, M., Gröne, H.-J., Waltenberger J., Kollet, O., Lapidot, T., Yayon, A. and Weich, H. Single-chain antibodies recognizing the human vascular endothelial growth factor receptor-2 (VEGFR-2, flk-1) on the surface of primary endothelial cells and preselected CD34+ cells from cord blood. Stem Cells 19 (2001) 24–36. http://dx.doi.org/10.1634/stemcells.19-1-2410.1634/stemcells.19-1-24Search in Google Scholar PubMed

[27] Mayer, H., Bertram, H., Lindenmaier, W., Korff, T., Weber, H. and Weich, H. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J. Cell Biochem. 95 (2005) 827–839. http://dx.doi.org/10.1002/jcb.2046210.1002/jcb.20462Search in Google Scholar PubMed

[28] Ospelt, C. and Gay, S. TLRs and chronic inflammation. Int. J. Biochem. Cell Biol. 42 (2010) 495–505. http://dx.doi.org/10.1016/j.biocel.2009.10.01010.1016/j.biocel.2009.10.010Search in Google Scholar PubMed

[29] Thomas, C.E., Ehrhardt, A. and Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4 (2003) 346–358. http://dx.doi.org/10.1038/nrg106610.1038/nrg1066Search in Google Scholar PubMed

[30] Swan, C.H., Bühler, B., Steinberger, P., Tschan, M.P., Barbas III, C.F. and Torbett, B.E. T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Ther. 13 (2006) 1480–1492. http://dx.doi.org/10.1038/sj.gt.330280110.1038/sj.gt.3302801Search in Google Scholar PubMed

[31] Cerullo, V., Seiler, M.P., Mane, V., Brunetti-Pierri, N., Clarke, C., Bertin, T.K., Rodgers, J.R. and Lee, B. Toll-like receptor 9 triggers an innate immune response to helper-dependent adenoviral vectors. Mol. Ther. 15 (2007) 378–385. http://dx.doi.org/10.1038/sj.mt.630003110.1038/sj.mt.6300031Search in Google Scholar PubMed

Published Online: 2013-7-27
Published in Print: 2013-9-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-013-0098-8/html
Scroll to top button