Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 17, 2012

Human adipose-derived stem cells for the treatment of intracerebral hemorrhage in rats via femoral intravenous injection

  • Kuo-Liang Yang EMAIL logo , Jiunn-Tat Lee , Cheng-Yoong Pang , Ting-Yi Lee , Shee-Ping Chen , Hock-Kean Liew , Shin-Yuan Chen , Tzu-Yung Chen and Py-Yu Lin

Abstract

Human adipose-derived stem cells (huADSC) were generated from fat tissue of a 65-year-old male donor. Flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) analyses indicated that the huADSC express neural cell proteins (MAP2, GFAP, nestin and β-III tubulin), neurotrophic growth factors (BDNF and GDNF), and the chemotactic factor CXCR4 and its corresponding ligand CXCL12. In addition, huADSC expressed the characteristic mesenchymal stem cell (MSC) markers CD29, CD44, CD73, CD90, CD105 and HLA class I. The huADSC were employed, via a right femoral vein injection, to treat rats inflicted with experimental intracerebral hemorrhage (ICH). Behavioral measurement on the experimental animals, seven days after the huADSC therapy, showed a significant functional improvement in the rats with stem cell therapy in comparison with rats of the control group without the stem cell therapy. The injected huADSC were detectable in the brains of the huADSC treated rats as determined by histochemistry analysis, suggesting a role of the infused huADSC in facilitating functional recovery of the experimental animals with ICH induced stroke.

[1] Xi, G., Keep, R.F. and Hoff, J.T. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 53 (2006) 53–63. http://dx.doi.org/10.1016/S1474-4422(05)70283-010.1016/S1474-4422(05)70283-0Search in Google Scholar PubMed

[2] Broderick, J.P., Adams, H.P. Jr., Barsan, W., Feinberg, W., Feldmann, E., Grotta, J., Kase, C., Krieger, D., Mayberg, M., Tilley, B., Zabramski, J.M. and Zuccarello, M. Guidelines for the management of spontaneous intracerebral hemorrhage: A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke, 30 (1999) 905–915. http://dx.doi.org/10.1161/01.STR.30.4.90510.1161/01.STR.30.4.905Search in Google Scholar PubMed

[3] Mendelow, A.D., Gregson, B.A., Fernandes, H.M., Murray, G.D., Teasdale, G.M., Hope, D.T., Karimi, A., Shaw, M.D., Barer, D.H. and STICH investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet, 365 (2005) 387–397. 10.1016/S0140-6736(05)70233-6Search in Google Scholar

[4] Del Bigio, M.R., Yan, H.J., Buist, R. and Peeling, J. Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke, 27 (1996) 2312–2319; discussion 2319–2320. http://dx.doi.org/10.1161/01.STR.27.12.231210.1161/01.STR.27.12.2312Search in Google Scholar

[5] Gong, C., Hoff, J.T. and Keep, R.F. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res. 871 (2000) 57–65. http://dx.doi.org/10.1016/S0006-8993(00)02427-610.1016/S0006-8993(00)02427-6Search in Google Scholar

[6] Xue, M. and Del Bigio, M.R. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci. Lett. 283 (2000) 230–232. http://dx.doi.org/10.1016/S0304-3940(00)00971-X10.1016/S0304-3940(00)00971-XSearch in Google Scholar

[7] Fenstermacher, J.D., Knight, R.A., Ewing, J.R., Nagaraja, T., Nagesh, V., Yee, J.S. and Arniego, P.A. Estimating blood-brain barrier opening in a rat model of hemorrhagic transformation with Patlak plots of Gd-DTPA contrast-enhanced MRI. Acta Neurochir. Suppl. 86 (2003) 35–37. http://dx.doi.org/10.1007/978-3-7091-0651-8_710.1007/978-3-7091-0651-8_7Search in Google Scholar PubMed

[8] Hoff, J.T. and Xi, G. Brain edema from intracerebral hemorrhage. Acta Neurochir. Suppl. 86 (2003) 11–15. http://dx.doi.org/10.1007/978-3-7091-0651-8_310.1007/978-3-7091-0651-8_3Search in Google Scholar PubMed

[9] Kitaoka, T., Hua, Y., Xi, G., Hoff, J.T. and Keep, R.F. Delayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage. Stroke 33 (2002) 3012–3018. http://dx.doi.org/10.1161/01.STR.0000037673.17260.1B10.1161/01.STR.0000037673.17260.1BSearch in Google Scholar

[10] MacLellan, C.L., Silasi, G., Poon, C.C., Edmundson, C.L., Buist, R., Peeling, J. and Colbourne, F. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J. Cereb. Blood Flow Metab. 28 (2008) 516–525. http://dx.doi.org/10.1038/sj.jcbfm.960054810.1038/sj.jcbfm.9600548Search in Google Scholar PubMed

[11] Rincon, F. and Mayer, S.A. Novel therapies for intracerebral hemorrhage. Curr. Opin. Crit. Care, 10 (2004) 94–100. http://dx.doi.org/10.1097/00075198-200404000-0000310.1097/00075198-200404000-00003Search in Google Scholar PubMed

[12] Wu, J., Hua, Y., Keep, R.F., Nakamura, T., Hoff, J.T. and Xi, G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke, 34 (2003) 2964–2969. http://dx.doi.org/10.1161/01.STR.0000103140.52838.4510.1161/01.STR.0000103140.52838.45Search in Google Scholar PubMed

[13] Bai, X., Ma, J., Pan, Z., Song, Y.H., Freyberg, S., Yan, Y., Vykoukal, D. and Alt, E. Electrophysiological properties of human adipose tissue-derived stem cells. Am. J. Physiol. Cell Physiol. 293 (2007) C1539–C1550. http://dx.doi.org/10.1152/ajpcell.00089.200710.1152/ajpcell.00089.2007Search in Google Scholar PubMed

[14] Bunnell, B.A., Flaat, M., Gagliardi, C., Patel, B. and Ripoll, C. Adiposederived stem cells: isolation, expansion and differentiation. Methods, 45 (2008) 115–120. http://dx.doi.org/10.1016/j.ymeth.2008.03.00610.1016/j.ymeth.2008.03.006Search in Google Scholar PubMed PubMed Central

[15] Gimble, J.M., Katz, A.J. and Bunnell, B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100 (2007) 1249–1260. http://dx.doi.org/10.1161/01.RES.0000265074.83288.0910.1161/01.RES.0000265074.83288.09Search in Google Scholar PubMed PubMed Central

[16] Hong, L., Peptan, I.A., Colpan, A. and Daw, J.L. Adipose tissue engineering by human adipose-derived stromal cells. Cells Tissues Organs, 183 (2006) 133–140. http://dx.doi.org/10.1159/00009598710.1159/000095987Search in Google Scholar PubMed

[17] Kang, S.K., Lee, D.H., Bae, Y.C., Kim, H.K., Baik, S.Y. and Jung, J.S. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derivrd stromal cells after cerebral ischemia in rats. Exp. Neurol. 183 (2003) 355–366. http://dx.doi.org/10.1016/S0014-4886(03)00089-X10.1016/S0014-4886(03)00089-XSearch in Google Scholar PubMed

[18] Lin, S.D., Wang, K.H. and Kao, A.P. Engineered adipose tissue of predefined shape and dimensions from human adipose-derived mesenchymal stem cells. Tissue Eng. Part A, 14 (2008) 571–581. http://dx.doi.org/10.1089/tea.2007.019210.1089/tea.2007.0192Search in Google Scholar PubMed

[19] Witkowska-Zimny, M. and Walenko, K. Stem cells from adipose tissue. Cell. Mol. Biol. Lett. 16 (2011) 236–257. http://dx.doi.org/10.2478/s11658-011-0005-010.2478/s11658-011-0005-0Search in Google Scholar PubMed PubMed Central

[20] Ohta, Y., Takenaga, M., Tokura, Y., Hamaguchi, A., Matsumoto, T., Kano, K., Mugishima, H., Okano, H. and Igarashi, R. Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transplant. 17 (2008) 877–886. http://dx.doi.org/10.3727/09636890878657651610.3727/096368908786576516Search in Google Scholar PubMed

[21] Safford, K.M., Hicok, K.C., Safford, S.D., Halvorsen, Y.D., Wilkison, W.O., Gimble, J.M. and Rice, H.E. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophy. Res. Commun. 294 (2002) 371–379. http://dx.doi.org/10.1016/S0006-291X(02)00469-210.1016/S0006-291X(02)00469-2Search in Google Scholar PubMed

[22] Planat-Bénard, V., Menard, C., André, M., Puceat, M., Perez, A., Garcia-Verdugo, J.M., Pénicaud, L., Casteilla, L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94 (2004) 223–229. http://dx.doi.org/10.1161/01.RES.0000109792.43271.4710.1161/01.RES.0000109792.43271.47Search in Google Scholar PubMed

[23] Kim, J.M., Lee, S.T., Chu, K., Jung, K.H., Song, E.C., Kim, S.J., Sinn, D.I., Kim, J.H., Park, D.K., Kang, K.M., Hyung Hong, N., Park, H.K., Won, C.H., Kim, K.H., Kim, M., Kun Lee, S. and Roh, J.K. Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res. 1183 (2007) 43–50. http://dx.doi.org/10.1016/j.brainres.2007.09.00510.1016/j.brainres.2007.09.005Search in Google Scholar PubMed

[24] Yang, K.L., Chen, M.F., Liao, C.H., Pang, C.Y. and Lin, P.Y.. A simple and efficient method for generating Nurr1-positive neuronal stem cells from human wisdom teeth (tNSC) and the potential of tNSC for stroke therapy. Cytotherapy, 11 (2009) 606–617. http://dx.doi.org/10.1080/1465324090280699410.1080/14653240902806994Search in Google Scholar PubMed

[25] Rosenberg, G.A., Mun-Bryce, S., Wesley, M. and Kornfeld, M. Collagenase-induced intracerebral hemorrhage in rats. Stroke, 21 (1990) 801–807. http://dx.doi.org/10.1161/01.STR.21.5.80110.1161/01.STR.21.5.801Search in Google Scholar PubMed

[26] MacLellan, C.L., Silasi, G., Poon, C.C., Edmundson, C.L., Buist, R., Peeling, J. and Colbourne, F. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J. Cereb. Blood Flow Metab. 28 (2008) 516–525. http://dx.doi.org/10.1038/sj.jcbfm.960054810.1038/sj.jcbfm.9600548Search in Google Scholar PubMed

[27] Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M. and Chopp, M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32 (2001) 1005–1011. http://dx.doi.org/10.1161/01.STR.32.4.100510.1161/01.STR.32.4.1005Search in Google Scholar PubMed

[28] Witkowska-Zimny, M. and Wrobel, E. Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell. Mol. Biol. Lett. 16 (2011) 493–514. http://dx.doi.org/10.2478/s11658-011-0019-710.2478/s11658-011-0019-7Search in Google Scholar PubMed PubMed Central

[29] Klassen, H., Schwartz, M.R., Bailey, A.H. and Young, M.J. Surface markers expressed by multipotent human and mouse neural progenitor cells include tetraspanins and non-protein epitopes. Neurosci. Lett. 312 (2001) 180–182. http://dx.doi.org/10.1016/S0304-3940(01)02215-710.1016/S0304-3940(01)02215-7Search in Google Scholar PubMed

[30] Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. and Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13 (2002) 4279–4295. http://dx.doi.org/10.1091/mbc.E02-02-010510.1091/mbc.e02-02-0105Search in Google Scholar PubMed PubMed Central

[31] Chen, L., He, D.M. and Zhang, Y. The differentiation of human placentaderived mesenchymal stem cells into dopaminergic cells in vitro. Cell. Mol. Biol. Lett. 14 (2009) 528–536. http://dx.doi.org/10.2478/s11658-009-0015-310.2478/s11658-009-0015-3Search in Google Scholar PubMed PubMed Central

[32] Mahmood, A., Lu, D., Wang, L. and Chopp, M. Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J. Neurotrauma, 19 (2002) 1609–1617. http://dx.doi.org/10.1089/08977150276230026510.1089/089771502762300265Search in Google Scholar PubMed

[33] Nakagami, H., Maeda, K., Morishita, R., Iguchi, S., Nishikawa, T., Takami, Y., Kikuchi, Y., Saito, Y., Tamai, K., Ogihara, T. and Kaneda, Y. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler. Thromb. Vasc. Biol. 25 (2005) 2542–2547. http://dx.doi.org/10.1161/01.ATV.0000190701.92007.6d10.1161/01.ATV.0000190701.92007.6dSearch in Google Scholar PubMed

[34] Tate, C.C., Fonck, C., McGrogan, M. and Case, C.C. Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant. 19 (2010) 973–984. http://dx.doi.org/10.3727/096368910X49488510.3727/096368910X494885Search in Google Scholar PubMed

[35] Harting, M.T., Jimenez, F., Xue, H., Fischer, U.M., Baumgartner, J., Dash, P.K. and Cox, C.S. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J. Neurosurg. 110 (2009) 1189–1197. http://dx.doi.org/10.3171/2008.9.JNS0815810.3171/2008.9.JNS08158Search in Google Scholar PubMed PubMed Central

[36] Schrepfer, S., Deuse, T., Reichenspurner, H., Fischbein, M.P., Robbins, R.C., Pelletier, M.P. Stem cell transplantation: the lung barrier. Transplant. Proc. 39 (2007) 573–576. http://dx.doi.org/10.1016/j.transproceed.2006.12.01910.1016/j.transproceed.2006.12.019Search in Google Scholar PubMed

[37] Mahmood, A., Lu, D. and Chopp, M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J. Neurotrauma, 21 (2004) 33–39. http://dx.doi.org/10.1089/08977150477269592210.1089/089771504772695922Search in Google Scholar PubMed

[38] Lin, G., Yang, R., Banie, L., Wang, G., Ning, H., Li, L.C., Lue, T.F., Lin, C.S. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate, 70 (2010) 1066–1073. http://dx.doi.org/10.1002/pros.2114010.1002/pros.21140Search in Google Scholar PubMed PubMed Central

[39] Chung, S., Sonntag, K.C., Andersson, T., Bjorklund, L.M., Park, J.J., Kim, D.W., Kang, U.J., Isacson, O. and Kim, K.S. Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur. J. Neurosci. 16 (2002) 1829–1838. http://dx.doi.org/10.1046/j.1460-9568.2002.02255.x10.1046/j.1460-9568.2002.02255.xSearch in Google Scholar PubMed PubMed Central

Published Online: 2012-6-17
Published in Print: 2012-9-1

© 2012 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-012-0016-5/html
Scroll to top button