Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 7, 2008

The cell type-specific effect of TAp73 isoforms on the cell cycle and apoptosis

  • Jitka Holcakova EMAIL logo , Pavla Ceskova , Roman Hrstka , Petr Muller , Lenka Dubska , Philip Coates , Emil Palecek and Borivoj Vojtesek

Abstract

p73, a member of the p53 family, exhibits activities similar to those of p53, including the ability to induce growth arrest and apoptosis. p73 influences chemotherapeutic responses in human cancer patients, in association with p53. Alternative splicing of the TP73 gene produces many p73 C- and N-terminal isoforms, which vary in their transcriptional activity towards p53-responsive promoters. In this paper, we show that the C-terminal spliced isoforms of the p73 protein differ in their DNA-binding capacity, but this is not an accurate predictor of transcriptional activity. In different p53-null cell lines, p73β induces either mitochondrial-associated or death receptor-mediated apoptosis, and these differences are reflected in different gene expression profiles. In addition, p73 induces cell cycle arrest and p21WAF1 expression in H1299 cells, but not in Saos-2. This data shows that TAp73 isoforms act differently depending on the tumour cell background, and have important implications for p73-mediated therapeutic responses in individual human cancer patients.

[1] Murray-Zmijewski, F., Lane, D.P. and Bourdon, J.C. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13 (2006) 962–972. http://dx.doi.org/10.1038/sj.cdd.440191410.1038/sj.cdd.4401914Search in Google Scholar

[2] Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J.C., Valent, A., Minty, A., Chalon, P., Lelias, J.M., Dumont, X., Ferrara, P., McKeon, F. and Caput, D. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90 (1997) 809–819. http://dx.doi.org/10.1016/S0092-8674(00)80540-110.1016/S0092-8674(00)80540-1Search in Google Scholar

[3] Melino, G., De Laurenzi, V. and Vousden, K.H. p73: Friend or foe in tumorigenesis. Nat. Rev. Cancer 2 (2002) 605–615. http://dx.doi.org/10.1038/nrc86110.1038/nrc861Search in Google Scholar

[4] Dominguez, G., Garcia, J.M., Pena, C., Silva, J., Garcia, V., Martinez, L., Maximiano, C., Gomez, M.E., Rivera, J.A., Garcia-Andrade, C. and Bonilla, F. DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J. Clin. Oncol. 24 (2006) 805–815. http://dx.doi.org/10.1200/JCO.2005.02.235010.1200/JCO.2005.02.2350Search in Google Scholar

[5] Concin, N., Becker, K., Slade, N., Erster, S., Mueller-Holzner, E., Ulmer, H., Daxenbichler, G., Zeimet, A., Zeillinger, R., Marth, C. and Moll, U.M. Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res. 64 (2004) 2449–2460. http://dx.doi.org/10.1158/0008-5472.CAN-03-106010.1158/0008-5472.CAN-03-1060Search in Google Scholar

[6] Deyoung, M.P. and Ellisen, L.W. p63 and p73 in human cancer: defining the network. Oncogene 26 (2007) 5169–5183. http://dx.doi.org/10.1038/sj.onc.121033710.1038/sj.onc.1210337Search in Google Scholar

[7] Coates, P.J. Regulating p73 isoforms in human tumours. J. Pathol. 210 (2006) 385–389. http://dx.doi.org/10.1002/path.208010.1002/path.2080Search in Google Scholar

[8] Flores, E.R., Tsai, K.Y., Crowley, D., Sengupta, S., Yang, A., McKeon, F. and Jacks, T. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416 (2002) 560–564. http://dx.doi.org/10.1038/416560a10.1038/416560aSearch in Google Scholar

[9] Irwin, M.S., Kondo, K., Marin, M.C., Cheng, L.S., Hahn, W.C. and Kaelin, W.G., Jr. Chemosensitivity linked to p73 function. Cancer Cell 3 (2003) 403–410. http://dx.doi.org/10.1016/S1535-6108(03)00078-310.1016/S1535-6108(03)00078-3Search in Google Scholar

[10] Rocco, J.W., Leong, C.O., Kuperwasser, N., DeYoung, M.P. and Ellisen, L.W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9 (2006) 45–56. http://dx.doi.org/10.1016/j.ccr.2005.12.01310.1016/j.ccr.2005.12.013Search in Google Scholar PubMed

[11] Vojtesek, B., Bartek, J., Midgley, C.A. and Lane, D.P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods 151 (1992) 237–244. http://dx.doi.org/10.1016/0022-1759(92)90122-A10.1016/0022-1759(92)90122-ASearch in Google Scholar

[12] Chen, J., Marechal, V. and Levine, A.J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13 (1993) 4107–4114. Search in Google Scholar

[13] Fredersdorf, S., Milne, A.W., Hall, P.A. and Lu, X. Characterization of a panel of novel anti-p21Waf1/Cip1 monoclonal antibodies and immunochemical analysis of p21Waf1/Cip1 expression in normal human tissues. Am. J. Pathol. 148 (1996) 825–835. Search in Google Scholar

[14] Masuda, H., Miller, C., Koeffler, H.P., Battifora, H. and Cline, M.J. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc. Natl. Acad. Sci. U S A 84 (1987) 7716–7719. http://dx.doi.org/10.1073/pnas.84.21.771610.1073/pnas.84.21.7716Search in Google Scholar PubMed PubMed Central

[15] Bodner, S.M., Minna, J.D., Jensen, S.M., D'Amico, D., Carbone, D., Mitsudomi, T., Fedorko, J., Buchhagen, D.L., Nau, M.M. and Gazdar, A.F. Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 7 (1992) 743–749. Search in Google Scholar

[16] Sambrook, J., Fritsch, E.F. and Maniatis, T. Assay for β-Galactosidase in Extracts of Mammalian Cells. in: Molecular cloning, 2th edition, Cold Spring Harbor Laboratory Press, 1989, 16.66–16.67. Search in Google Scholar

[17] Thurfjell, N., Coates, P.J., Uusitalo, T., Mahani, D., Dabelsteen, E., Dahlqvist, A., Sjostrom, B., Roos, G. and Nylander, K. Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck. Int. J. Oncol. 25 (2004) 27–35. Search in Google Scholar

[18] Boldrup, L., Bourdon, J.C., Coates, P.J., Sjostrom, B. and Nylander, K. Expression of p53 isoforms in squamous cell carcinoma of the head and neck. Eur. J. Cancer 43 (2007) 617–623. http://dx.doi.org/10.1016/j.ejca.2006.10.01910.1016/j.ejca.2006.10.019Search in Google Scholar PubMed PubMed Central

[19] Lohr, K., Moritz, C., Contente, A. and Dobbelstein, M. p21/CDKN1A mediates negative regulation of transcription by p53. J. Biol. Chem. 278 (2003) 32507–32516. http://dx.doi.org/10.1074/jbc.M21251720010.1074/jbc.M212517200Search in Google Scholar PubMed

[20] Grob, T.J., Novak, U., Maisse, C., Barcaroli, D., Luthi, A.U., Pirnia, F., Hugli, B., Graber, H.U., De Laurenzi, V., Fey, M.F., Melino, G. and Tobler, A. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell. Death. Differ. 8 (2001) 1213–1223. http://dx.doi.org/10.1038/sj.cdd.440096210.1038/sj.cdd.4400962Search in Google Scholar PubMed

[21] Ueda, Y., Hijikata, M., Takagi, S., Chiba, T. and Shimotohno, K. Transcriptional activities of p73 splicing variants are regulated by intervariant association. Biochem. J. 356 (2001) 859–866. http://dx.doi.org/10.1042/0264-6021:356085910.1042/bj3560859Search in Google Scholar

[22] Brazda, V., Muller, P., Brozkova, K. and Vojtesek, B. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem. Biophys. Res. Commun 351 (2006) 499–506. http://dx.doi.org/10.1016/j.bbrc.2006.10.06510.1016/j.bbrc.2006.10.065Search in Google Scholar PubMed

[23] Bernassola, F., Salomoni, P., Oberst, A., Di Como, C.J., Pagano, M., Melino, G. and Pandolfi, P.P. Ubiquitin-dependent degradation of p73 is inhibited by PML. J. Exp. Med. 199 (2004) 1545–1557. http://dx.doi.org/10.1084/jem.2003194310.1084/jem.20031943Search in Google Scholar PubMed PubMed Central

[24] Murphy, M., Ahn, J., Walker, K.K., Hoffman, W.H., Evans, R.M., Levine, A.J. and George, D.L. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes. Dev. 13 (1999) 2490–2501. http://dx.doi.org/10.1101/gad.13.19.249010.1101/gad.13.19.2490Search in Google Scholar PubMed PubMed Central

[25] Lanza, M., Marinari, B., Papoutsaki, M., Giustizieri, M.L., D'Alessandra, Y., Chimenti, S., Guerrini, L. and Costanzo, A. Cross-talks in the p53 family: deltaNp63 is an anti-apoptotic target for deltaNp73alpha and p53 gain-offunction mutants. Cell Cycle 5 (2006) 1996–2004. Search in Google Scholar

[26] Terrasson, J., Allart, S., Martin, H., Lule, J., Haddada, H., Caput, D. and Davrinche, C. p73-dependent apoptosis through death receptor: impairment by human cytomegalovirus infection. Cancer Res. 65 (2005) 2787–2794. http://dx.doi.org/10.1158/0008-5472.CAN-04-201910.1158/0008-5472.CAN-04-2019Search in Google Scholar PubMed

[27] Glasgow, J.N., Qiu, J., Rassin, D., Grafe, M., Wood, T. and Perez-Pol, J.R. Transcriptional regulation of the BCL-X gene by NF-kappaB is an element of hypoxic responses in the rat brain. Neurochem. Res. 26 (2001) 647–659. http://dx.doi.org/10.1023/A:101098722003410.1023/A:1010987220034Search in Google Scholar

[28] Reed, J.C. Apoptosis-targeted therapies for cancer. Cancer Cell 3 (2003) 17–22. http://dx.doi.org/10.1016/S1535-6108(02)00241-610.1016/S1535-6108(02)00241-6Search in Google Scholar

Published Online: 2008-7-7
Published in Print: 2008-9-1

© 2008 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-008-0011-z/html
Scroll to top button