Skip to main content

Advertisement

Log in

Results of the application of tropospheric corrections from different troposphere models for precise GPS rapid static positioning

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

In many surveying applications, determination of accurate heights is of significant interest. The delay caused by the neutral atmosphere is one of the main factors limiting the accuracy of GPS positioning and affecting mainly the height coordinate component rather than horizontal ones. Estimation of the zenith total delay is a commonly used technique for accounting for the tropospheric delay in static positioning. However, in the rapid static positioning mode the estimation of the zenith total delay may fail, since for its reliable estimation longer observing sessions are required. In this paper, several troposphere modeling techniques were applied and tested with three processing scenarios: a single baseline solution with various height differences and a multi-baseline solution. In specific, we introduced external zenith total delays obtained from Modified Hopfield troposphere model with standard atmosphere parameters, UNB3m model, COAMPS numerical weather prediction model and zenith total delays interpolated from a reference network solution. The best results were obtained when tropospheric delays derived from the reference network were applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bevis, M., S.T. Businger, and T.H.A. Herring, C. Rocken, R.A. Anthes, R.H. Ware (1992), GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res. 97,D14, 15787–15801, DOI: 10.1029/92JD01517.

    Article  Google Scholar 

  • Black, H.D., and A. Eisner (1984), Correcting satellite doppler data for tropospheric effects, J. Geophys. Res. 89,D2, 2616–2626, DOI: 10.1029/JD089iD02p02616.

    Article  Google Scholar 

  • Bock, O., and E. Doerflinger (2000), Atmospheric processing methods for high accuracy positioning with the Global Positioning System. In: Proc. COST Action 716 Workshop, 10–12 July 2000, Soria Moria, Oslo, Norway.

  • Boehm, J., B. Werl, and H. Schuh (2006), Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res. 111, B02406, DOI: 10.1029/2005JB003629.

    Article  Google Scholar 

  • Boehm, J., R. Heinkelmann, and H. Schuh (2007), Short note: A global model of pressure and temperature for geodetic applications, J. Geod. 81,10, 679–683, DOI: 10.1007/s00190-007-0135-3.

    Article  Google Scholar 

  • Bosy, J., W. Graszka, and M. Leonczyk (2007), ASG-EUPOS — a multifunctional precise satellite positioning system in Poland, Trans. Nav. 1,4, 371–374.

    Google Scholar 

  • Chao, C.C. (1972), A Model for Tropospheric Calibration from Daily Surface and Radiosonde Balloon Measurements. In: Technical Memorandum, Jet Propulsion Laboratory, Pasadena, California, USA, 391–350.

  • Davis, J.L., T.H.A Herring, I.I. Shapiro, A.E.E. Rogers, and G. Elgered (1985), Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci. 20,6, 1593–1607, DOI: 10.1029/RS020i006p01593.

    Article  Google Scholar 

  • Figurski, M., M. GaŁuszkiewicz, P. Kamiński, and K. Kroszczyński (2009), Mesoscale anisotropy of GPS slant delay, Bull. Geod. Geomatics 2, 99–110.

    Google Scholar 

  • Foelsche, U., and G. Kirchengast (2002), A simple “geometric” mapping function for the hydrostatic delay at radio frequencies and assessment of its performance, Geophys. Res. Lett. 29,1473, 1111–1114, DOI: 10.1029/2001GL013744.i., 6, 3

    Google Scholar 

  • Goad, C.C., and L. Goodman (1974), A modified Hopfield tropospheric refraction correction model. In: American Geophysical Union Annual Fall Meeting, 12–17 December 1974, San Francisco, California, USA (abstract EOS Trans. AGU 55, 1106).

  • Guo, J., and R.B. Langley (2003), A new tropospheric propagation delay mapping function for elevation angles down to 2°. In: Proc. 16th Int. Tech. Meeting of the Satellite Division of The Institute of Navigation, 9–12 September 2003, Portland, OR, USA, 386–396.

  • Gutman, S.I., and S.G. Benjamin (2001), The role of ground-based GPS meteorological observations in numerical weather prediction, GPS Solutions 4,4, 16–24, DOI: 10.1007/PL00012860.

    Article  Google Scholar 

  • Hobiger, T., R. Ichikawa, Y. Koyama, and T. Kondo (2008a), Fast and accurate raytracing algorithms for real-time space geodetic applications using numerical weather models, J. Geophys. Res. 113, D20302, DOI: 10.1029/2008JD010503.

    Article  Google Scholar 

  • Hobiger, T., R. Ichikawa, T. Takasu, Y. Koyama, and T. Kondo (2008b), Ray-traced troposphere slant delays for precise point positioning, Earth Planets Space 60,5, e1–e4.

    Google Scholar 

  • Hobiger, T., S. Shimada, S. Shimizu, R. Ichikawa, Y. Koyama, and T. Kondo (2010), Improving GPS positioning estimates during extreme weather situations by the help of fine-mesh numerical weather models, J. Atmos. Solar-Terrestr. Phys. 72,2–3, 262–270, DOI: 10.1016/j.jastp.2009.11.018.

    Article  Google Scholar 

  • Hodur, R.M., X. Hong, J.D. Doyle, J. Pullen, J. Cummings, P. Martin, and M.A. Rennick (2002), The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), Oceanography 15,1, 88–98.

    Article  Google Scholar 

  • Hopfield, H.S. (1971), Tropospheric effect on electromagnetically measured range: prediction from surface weather data, Radio Sci. 6,3, 357–367, DOI: 10.1029/RS006i003p00357.

    Article  Google Scholar 

  • Jonge, de, P.J., and C. Tiberius (1996), The LAMBDA method for integer ambiguity estimation: implementation aspects, LGR Publs. 12, 1–49.

    Google Scholar 

  • Leandro, R., M.C. Santos, and R.B. Langley (2006), UNB neutral atmosphere models: development and performance. In: Proc. Inst. Navigation, National Technical Meeting, 18–20 January 2006, Monterrey, CA, USA.

  • Leandro, R.F., R.B. Langley, and M.C. Santos (2008), UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques, GPS Solutions 12,1, 65–70, DOI: 10.1007/s10291-007-0077-5.

    Article  Google Scholar 

  • Leick, A. (2004), GPS Satellite Surveying, John Wiley & Sons, New Jersey, 474 pp.

    Google Scholar 

  • Mendes, V.B. (1999), Modeling the neutral-atmosphere propagation delay in radiometric space techniques, Ph.D. Thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada, Technical Report No. 199.

    Google Scholar 

  • Niell, A.E. (1996), Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res. 101,B2, 3227–3246, DOI: 10.1029/95JB03048.

    Article  Google Scholar 

  • Ramjee, P., and M. Ruggieri (2005), Applied Satellite Navigation Using GPS, GALILEO and Augmentation Systems, Artech House, Boston, Artech House mobile communications series.

    Google Scholar 

  • Rothacher, M. (2002), Estimation of station heights with GPS. In: H. Drewes, A. Dodson, L.P.S. Fortes, L. Sánchez, and P. Sandoval (eds.), Vertical Reference Systems, Springer, Berlin, 81–90.

    Google Scholar 

  • Saastamoinen, J. (1972), Atmospheric Correction for the troposphere and stratosphere in radio ranging of satellites, In: S. Henriksen, The Use of Artificial Satellites for Geodesy, Geophys. Monogr. Ser. 15, 247–251, AGU, Washington, D.C.

    Chapter  Google Scholar 

  • Saha, K., C.S. Raju, and K. Parameswaran (2010), A new hydrostatic mapping function for tropospheric delay estimation, J. Atmos. Solar-Terrestr. Phys. 72,1, 125–134, DOI: 10.1016/j.jastp.2009.10.017.

    Article  Google Scholar 

  • Schaer, S. (1999), Mapping and predicting the Earth’s ionosphere using the Global Positioning System, Ph.D. Thesis, Astronomical Institute, University of Bern, Bern, Switzerland, 205 pp.

    Google Scholar 

  • Steigenberger, P., J. Boehm, and V. Tesmer (2009), Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading, J. Geod. 83,10, 943–951, DOI: 10.1007/s00190-009-0311-8.

    Article  Google Scholar 

  • Teunissen, P.J.G. (1995), The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, J. Geod. 70,1–2, 65–82, DOI: 10.1007/BF00863419.

    Article  Google Scholar 

  • Vey, S., R. Dietrich, M. Fritsche, A. Rülke, M. Rothacher, and P. Steigenberger (2006), Influence of mapping function parameters on global GPS network analyses: Comparisons between NMF and IMF, Geophys. Res. Lett. 33, L01814, DOI: 10.1029/2005GL024361.

    Article  Google Scholar 

  • Wielgosz, P. (2011), Quality assessment of GPS rapid static positioning with weighted ionospheric parameters in generalized least squares, GPS Solutions 15,2, 89–99, DOI: 10.1007/s10291-010-0168-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Wielgosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wielgosz, P., Paziewski, J., Krankowski, A. et al. Results of the application of tropospheric corrections from different troposphere models for precise GPS rapid static positioning. Acta Geophys. 60, 1236–1257 (2012). https://doi.org/10.2478/s11600-011-0078-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-011-0078-1

Key words

Navigation