Skip to main content
Log in

A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

A semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudoincompressible results are quantified in reference to a recent asymptotic theory [Achatz et al. 2010, J. Fluid Mech., 663, 120–147)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achatz, U., R. Klein, and F. Senf (2010), Gravity waves, scale asymptotics and the pseudo-incompressible equations, J. Fluid Mech. 663, 120–147, DOI: 10.1017/S0022112010003411.

    Article  Google Scholar 

  • Axelsson, O. (1994), Iterative Solution Methods, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bacon, D.P., N.N. Ahmad, Z. Boybeyi, T.J. Dunn, M.S. Hall, P.C.S. Lee, R.A. Sarma, M.D. Turner, K.T. Waight, S.H. Young, and J.W. Zack (2000), A dynamically adapting weather and dispersion model: The operational multiscale environment model with grid adaptivity (OMEGA), Month. Weather Rev. 128,7, 2044–2067, DOI: 10.1175/1520-0493(2000)128<2044:ADAWAD>2.0.CO;2.

    Article  Google Scholar 

  • Bacon, D.P., N.N. Ahmad, T.J. Dunn, M.C. Monteith, and A. Sarma (2008), An operational multiscale system for hazards prediction, mapping, and response, Nat. Hazards 44,3, 317–327, DOI: 10.1007/s11069-007-9132-3.

    Article  Google Scholar 

  • Barth, T.J. (1992), Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. In: Special Course on Unstructured Grid Methods for Advection Dominated Flows, AGARD Reports series 787, AGARD, Neuilly sur Seine, 6.1–6.61.

  • Behrens, J., S. Reich, M. Lauter, B. Wingate, and D. Williamson (2010), The 2010 Workshop on the Solution of PDEs on the Sphere, http://www.awipotsdam.de/pde2010/pdes2010\_program.pdf.

  • Birkhoff, G., and R.E. Lynch (1984), Numerical Solution of Elliptic Problems, SIAM 6, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bunge, H.-P., M.A. Richards, and J.R. Baumgardner (1997), A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change, J. Geophys. Res. 102,B6, 11,991–12,007, DOI: 10.1029/96JB03806.

    Article  Google Scholar 

  • Davies, H.C. (1983), Limitations of some common lateral boundary schemes used in regional NWP models, Month. Weather Rev. 111,5, 1002–1012, DOI: 10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2.

    Article  Google Scholar 

  • Davies, T., A. Staniforth, N. Wood, and J. Thuburn (2003), Validity of anelastic and other equation sets as inferred from normal-mode analysis, Quart. J. Roy. Met. Soc. 129, 2761–2775, DOI: 10.1256/qj.02.1951.

    Google Scholar 

  • Doyle, J.D., D.R. Durran, C. Chen, B.A. Colle, M. Georgelin, V. Grubisic, W.R. Hsu, C.Y. Huang, D. Landau, Y.L. Lin, G.S. Poulos, W.Y. Sun, D.B. Weber, M.G. Wurtele, and M. Xue (2000), An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder Windstorm, Month. Weather Rev. 128,3, 901–914, DOI: 10.1175/1520-0493(2000)128<0901:AIOMPW>2.0.CO;2.

    Article  Google Scholar 

  • Durran, D.R. (1989), Improving the anelastic approximation, J. Atmos. Sci. 46,11, 1453–1461, DOI: 10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    Article  Google Scholar 

  • Durran, D.R. (2008), A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow, J. Fluid Mech. 601, 365–379, DOI: 10.1017/S0022112008000608.

    Article  Google Scholar 

  • Eisenstat, S.C., H.C. Elman, and M.H. Schultz (1983), Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20,2, 345–357.

    Article  Google Scholar 

  • Ghizaru, M., P. Charbonneau, and P.K. Smolarkiewicz (2010), Magnetic cycles in global large-eddy simulations of solar convection, Astrophys. J. Lett. 715,2, L133–L137, DOI: 10.1088/2041-8205/715/2/L133.

    Article  Google Scholar 

  • Grabowski, W.W., and P.K. Smolarkiewicz (2002), A multiscale anelastic model for meteorological research, Month. Weather Rev. 130,4, 939–956, DOI: 10.1175/1520-0493(2002)130<0939:AMAMFM>2.0.CO;2.

    Article  Google Scholar 

  • Greenbaum, A. (2002), Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA.

    Google Scholar 

  • Klein, R. (2011), On the regime of validity of sound-proof model equations for atmospheric flows. In: Proc. of the ECMWF Workshop on Nonhydrostatic Modelling, 8–10 November, 2010, Reading, UK, 35–53.

  • Klein, R., U. Achatz, D. Bresch, O.M. Knio, and P.K. Smolarkiewicz (2010), Regime of validity of soundproof atmospheric flow models, J. Atmos. Sci. 67,10, 3226–3237, DOI: 10.1175/2010JAS3490.1.

    Article  Google Scholar 

  • Kosloff, R., and D. Kosloff (1986), Absorbing boundaries for wave propagation problems, J. Comput. Phys. 63,2, 363–376, DOI:10.1016/0021-9991(86)90199-3.

    Article  Google Scholar 

  • Lipps, F.B. (1990), On the anelastic approximation for deep convection, J. Atmos. Sci. 47,14, 1794–1798, DOI: 10.1175/1520-0469(1990)047<1794:OTAAFD>2.0.CO;2

    Article  Google Scholar 

  • Lipps, F.B., and R.S. Hemler (1982), A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci. 39,10, 2192–2210, DOI:10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.

    Article  Google Scholar 

  • Miller, M.J., and P.K. Smolarkiewicz (2008), Predicting weather, climate and extreme events, Preface, J. Comput. Phys. 227,7, 3429–3430, DOI:10.1016/j.jcp.2008.01.001.

    Article  Google Scholar 

  • Nikiforakis, N. (2009), Mesh generation and mesh adaptation for large-scale Earthsystem modelling, Introduction, Phil. Trans. R. Soc. A 367, 4473–4481, DOI:10.1098/rsta.2009.0197.

    Article  Google Scholar 

  • Piotrowski, Z.P., A. A. Wyszogrodzki, and P.K. Smolarkiewicz (2011), Towards petascale simulation of atmospheric circulations with soundproof equations, Acta Geophys. 59,6, DOI: 10.2478/s11600-011-049-6.

  • Prusa, J.M., and P.K. Smolarkiewicz (2003), An all-scale anelastic model for geophysical flows: dynamic grid deformation, J. Comput. Phys. 190,2, 601–622, DOI: 10.1016/S0021-9991(03)00299-7.

    Article  Google Scholar 

  • Prusa, J.M., P.K. Smolarkiewicz, and R.R. Garcia (1996), Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing, J. Atmos. Sci. 53,15, 2186–2216, DOI: 10.1175/1520-0469(1996)053<2186:PABAHA>2.0.CO;2.

    Article  Google Scholar 

  • Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2001), Simulations of gravity wave induced turbulence using 512 PE Cray T3E, Int. J. Appl. Math. Comput. Sci. 11,4, 883–897.

    Google Scholar 

  • Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2008), EULAG, a computational model for multiscale flows, Comput. Fluids 37,9, 1193–1207, DOI:10.1016/j.compfluid.2007.12.001.

    Article  Google Scholar 

  • Saad, Y. (1995), Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 447 pp.

    Google Scholar 

  • Smith, R.B. (1979), The influence of the mountains on the atmosphere, Adv. Geophys. 21, 87–230, DOI: 10.1016/S0065-2687(08)60262-9.

    Article  Google Scholar 

  • Smolarkiewicz, P.K. (1983), A simple positive definite advection scheme with small implicit diffusion, Month.Weather Rev. 111,3, 479–486, DOI: 10.1175/1520-0493(1983)111<0479:ASPDAS>2.0.CO;2.

    Article  Google Scholar 

  • Smolarkiewicz, P.K. (1984), A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comput. Phys. 54,2, 325–362, DOI: 10.1016/0021-9991(84)90121-9.

    Article  Google Scholar 

  • Smolarkiewicz, P.K. (2006), Multidimensional positive definite advection transport algorithm: an overview, Int. J. Numer. Meth. Fluids 50,10, 1123–1144, DOI:10.1002/fld.1071.

    Article  Google Scholar 

  • Smolarkiewicz, P.K. (2011), Modeling atmospheric circulations with soundproof equations. In: Proc. of the ECMWF Workshop on Nonhydrostatic Modelling, 8–10 November, 2010, Reading, UK, 1–15.

  • Smolarkiewicz, P.K., and A. Dörnbrack (2008), Conservative integrals of adiabatic Durran’s equations, Int. J. Numer. Meth. Fluids 56,8, 1513–1519, DOI:10.1002/fld.1601.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., and L.G. Margolin (1993), On forward-in-time differencing for fluids: Extension to a curvilinear framework, Month. Weather Rev. 121,6, 1847–1859, DOI: 10.1175/1520-0493(1993)121<1847:OFITDF>2.0.CO;2.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., and L.G. Margolin (1994), Variational solver for elliptic problems in atmospheric flows, Appl. Math. Comp. Sci. 4, 527–551.

    Google Scholar 

  • Smolarkiewicz, P.K., and L.G. Margolin (1997), On forward-in-time differencing for fluids: an Eulerian/semi-Lagrangian non-hydrostatic model for stratified flows, Atmos. Ocean Sp. 35,1, 127–152, DOI: 10.1080/07055900.1997.9687345.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., and L.G. Margolin (2000), Variational methods for elliptic problems in fluid models. In: Proc. Workshop on Developments in Numerical Methods for Very High Resolution Global Models’, 5–7 June 2000, ECMWF, Reading, UK, 137–159.

  • Smolarkiewicz, P.K., and J. Szmelter (2005a), Multidimensional positive definite advection transport algorithm (MPDATA): an edge-based unstructured-data formulation, Int. J. Numer. Meth. Fluids 47,10–11, 1293–1299, DOI:10.1002/fld.848.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., and J. Szmelter (2005b), MPDATA: An edge-based unstructured-grid formulation, J. Comput. Phys. 206,2, 624–649, DOI:10.1016/j.jcp.2004.12.021.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., and J. Szmelter (2009), Iterated upwind schemes for gas dynamics, J. Comput. Phys. 228, 33–54, doi:10.1016/j.jcp.2008.08.008.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., and C.L. Winter (2010), Pores resolving simulation of Darcy flows, J. Comput. Phys. 229,9, 3121–3133, DOI: 10.1016/j.jcp.2009.12.031.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., V. Grubisic, and L.G. Margolin (1997), On forward-in-time differencing for fluids: Stopping criteria for iterative solutions of anelastic pressure equations, Month. Weather Rev. 125,4, 647–654, DOI: 10.1175/1520-0493(1997)125<0647:OFITDF>2.0.CO;2.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., L.G. Margolin, and A.A. Wyszogrodzki (2001), A class of nonhydrostatic global models, J. Atmos. Sci. 58,4, 349–364, DOI: 10.1175/1520-0469(2001)058<0349:ACONGM>2.0.CO;2.

    Article  Google Scholar 

  • Smolarkiewicz, P.K., C. Temperton, S.J. Thomas, and A.A. Wyszogrodzki (2004), Spectral preconditioners for nonhydrostatic atmospheric models: extreme applications. In: Proc. ECMWF Seminar Series on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, 6–10 September, 2004, Reading, UK, 203–220.

  • Smolarkiewicz, P.K., R. Sharman, J. Weil, S.G. Perry, D. Heist, and G. Bowker (2007), Building resolving large-eddy simulations and comparison with wind tunnel experiments, J. Comput. Phys. 227, 633–653, DOI: 10.1016/j.jcp.2007.08.005.

    Article  Google Scholar 

  • Szmelter, J., and P.K. Smolarkiewicz (2006), MPDATA error estimator for mesh adaptivity, Int. J. Numer. Meth. Fluids 50,10, 1269–1293, DOI: 10.1002/fld.1118.

    Article  Google Scholar 

  • Szmelter, J., and P.K. Smolarkiewicz (2010), An edge-based unstructured mesh discretisation in geospherical framework, J. Comput. Phys. 229,13, 4980–4995, DOI: 10.1016/j.jcp.2010.03.017.

    Article  Google Scholar 

  • Szmelter, J., and P.K. Smolarkiewicz (2011), An edge-based unstructured mesh framework for atmospheric flows, Comput. Fluids 46, 455–460, DOI:10.1016/j.compfluid.2010.10.020.

    Article  Google Scholar 

  • Warn-Varnas, A., J. Hawkins, P.K. Smolarkiewicz, S.A. Chin-Bing, D. King, and Z. Hallock (2007), Solitary wave effects north of Strait of Messina, Ocean Model. 18,2, 97–121, DOI: 10.1016/j.ocemod.2007.03.003.

    Article  Google Scholar 

  • Wedi, N.P., and P.K. Smolarkiewicz (2004), Extending Gal-Chen and Somerville terrain-following coordinate transformation on time-dependent curvilinear boundaries, J. Comput. Phys. 193, 1–20, DOI: 10.1016/j.jcp.2003.07.034.

    Article  Google Scholar 

  • Williamson, D.L. (2008), The evolution of dynamical cores for global atmospheric models, J. Meteorol. Soc. Jpn. 85B, 241–268, DOI: 10.2151/jmsj.85B.241.

    Article  Google Scholar 

  • Wurtele, M.G., R.D. Sharman, and A. Datta (1996), Atmospheric lee waves, Ann. Rev. Fluid. Mech. 28, 429–476, DOI: 10.1146/annurev.fl.28.010196.002241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr K. Smolarkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolarkiewicz, P.K., Szmelter, J. A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves. Acta Geophys. 59, 1109–1134 (2011). https://doi.org/10.2478/s11600-011-0043-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-011-0043-z

Key words

Navigation