Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 13, 2013

Endothelial nitric oxide synthase g894t (rs1799983) gene polymorphism in polish athletes

  • Jerzy Eider EMAIL logo , Krzysztof Ficek , Mariusz Kaczmarczyk , Agnieszka Maciejewska-Karłowska , Marek Sawczuk and Paweł Cięszczyk
From the journal Open Life Sciences

Abstract

The NOS3 gene has been associated with athletic endurance performance and elite power athletic status. With respect to NOS3 G894T and its relation to athletic performance or status, results across various studies have not been consistent. Therefore, the lack of consistency among previous studies prompted us to design a case-control study in a Polish Caucasian population to examine the relationship between the NOS3 G894T polymorphism and athletes' status, i.e. type and intensity of exercise performed (poweroriented, “mixed” power/endurance activity, endurance-oriented) and the possible association between the G894T variant and athletic performance. The case-control study was performed in a group of 360 Polish athletes (cases) of the highest nationally competitive standard (male n=156 and female n=67) and 191 unrelated, sedentary control subjects. The G894T genotype and allele distributions differed significantly between power-oriented (P=0.009, P=0.003), “mixed” (P=0.021, P=0.009), endurance (P=0.043, P=0.014) athletes when compared to control subjects (P values for genotypes and alleles, respectively). There were no significant differences between elite and sub-elite athletes in any group. The over-representation of the GG genotype and G allele in all athletes suggests that the G894 allele may favour all types of sports, however, the strongest predisposition was seen among power-oriented athletes.

[1] Bredt D.S., Nitric oxide signaling specificity-the heart of the problem, J. Cell Sci., 2003, 16, 9–15 http://dx.doi.org/10.1242/jcs.0018310.1242/jcs.00183Search in Google Scholar

[2] Bredt D.S., Endogenous nitric oxide synthesis: biological functions and pathophysiology, Free Radic. Res., 1999, 31, 577–596 http://dx.doi.org/10.1080/1071576990030116110.1080/10715769900301161Search in Google Scholar

[3] Wang X.L., Mahaney M.C., Sim A.S., Wang J., Wang J., Blangero J., et al., Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasma nitric oxide levels, Arterioscler Thromb. Vasc. Biol., 1997, 17, 3147–3153 http://dx.doi.org/10.1161/01.ATV.17.11.314710.1161/01.ATV.17.11.3147Search in Google Scholar

[4] Chakder S., Bandyopadhyay A., Rattan S., Neuronal NOS gene expression in gastrointestinal myenteric neurons and smooth muscle cells, Am. J. Physiol., 1997, 273, C1868–1875 10.1152/ajpcell.1997.273.6.C1868Search in Google Scholar

[5] Mashimo H., Kjellin A., Goyal R.K., Gastric stasis in neuronal nitric oxide synthase-deficient knockout mice. Gastroenterology, 2000, 119, 766–773 http://dx.doi.org/10.1053/gast.2000.1650910.1053/gast.2000.16509Search in Google Scholar

[6] Wolfarth B., Rankinen T., Mühlbauer S., Ducke M., Rauramaa R., Boulay M.R., et al., Endothelial nitric oxide synthase gene polymorphism and elite endurance athlete status: the Genathlete study, Scand. J. Med. Sci. Sports, 2008, 18, 485–490 http://dx.doi.org/10.1111/j.1600-0838.2007.00717.x10.1111/j.1600-0838.2007.00717.xSearch in Google Scholar

[7] Singh R. Jr., Fluid balance and exercise performance, Malays. J. Nutr., 2003, 9, 53–74. Search in Google Scholar

[8] Tschakovsky M.E., Joyner M.J., Nitric oxide and muscle blood flow in exercise, Appl. Physiol. Nutr. Metab, 2008, 33, 151–161 http://dx.doi.org/10.1139/H07-14810.1139/H07-148Search in Google Scholar

[9] Hare J.M., Nitric oxide and excitation-contraction coupling, J. Mol. Cell Cardiol., 2003, 35, 719–729 http://dx.doi.org/10.1016/S0022-2828(03)00143-310.1016/S0022-2828(03)00143-3Search in Google Scholar

[10] Martins K.J.B., St-Louis M., Murdoch G.K., MacLean I.M., McDonald P., Dixon W.T., et al., Nitric oxide synthase inhibition prevents activityinduced calcineurin-NFATc1 signalling and fastto-slow skeletal muscle fibre type conversions, J. Physiol., 2012, 590, 1427–1442 10.1113/jphysiol.2011.223370Search in Google Scholar PubMed PubMed Central

[11] Brown GC., Nitric oxide and mitochondria, Front. Biosci., 2007, 12, 1024–1033. http://dx.doi.org/10.2741/212210.2741/2122Search in Google Scholar PubMed

[12] McConell G.K., Rattigan S., Lee-Young R.S., Wadley G.D., Merry T.L., Skeletal muscle nitric oxide signalling and exercise: a focus on glucose metabolism, Am. J. Physiol. Endocrinol. Metab., 2012, 3, 301–307 http://dx.doi.org/10.1152/ajpendo.00667.201110.1152/ajpendo.00667.2011Search in Google Scholar

[13] Grozdanovic Z., NO message from muscle, Microsc. Res. Tech., 2001, 55, 148–153. http://dx.doi.org/10.1002/jemt.116510.1002/jemt.1165Search in Google Scholar

[14] Wang M.X., Murrell D.F., Szabo C., Warren R.F., Sarris M., Murrell G.A., Nitric oxide in skeletal muscle: inhibition of nitric oxide synthase inhibits walking speed in rats, Nitric Oxide, 2001, 5, 219–232 http://dx.doi.org/10.1006/niox.2001.034810.1006/niox.2001.0348Search in Google Scholar

[15] McConell G.K., Bradley S.J., Stephens T.J., Canny B.J., Kingwell B.A., Lee-Young R.S., Skeletal muscle nNOS mu protein content is increased by exercise training in humans, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293, R821–828 http://dx.doi.org/10.1152/ajpregu.00796.200610.1152/ajpregu.00796.2006Search in Google Scholar

[16] Ahmetov I.I., Rogozkin V.A., Genes, athlete status and training — An overview, Med. Sport. Sci., 2009, 54, 43–71 http://dx.doi.org/10.1159/00023569610.1159/000235696Search in Google Scholar

[17] Wang X.L., Sim A.S., Wang M.X., Murrell G.A., Trudinger B., Wang J., Genotype dependent and cigarette specific effects on endothelial nitric oxide synthase gene expression and enzyme activity, FEBS. Lett., 2000, 471, 45–50 http://dx.doi.org/10.1016/S0014-5793(00)01356-910.1016/S0014-5793(00)01356-9Search in Google Scholar

[18] Miyamoto Y., Saito Y., Nakayama M., Shimasaki Y., Yoshimura T., Yoshimura M., et al., Replication protein A1 reduces transcription of the endothelial nitric oxide synthase gene containing a −786T->C mutation associated with coronary spastic angina, Hum. Mol. Genet., 2000, 9, 2629–2637 http://dx.doi.org/10.1093/hmg/9.18.262910.1093/hmg/9.18.2629Search in Google Scholar PubMed

[19] Tsukada T., Yokoyama K., Arai T., Takemoto F., Hara S., Yamada A., et al. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans, Biochem. Biophys. Res. Commun., 1998, 245, 190–193 http://dx.doi.org/10.1006/bbrc.1998.826710.1006/bbrc.1998.8267Search in Google Scholar PubMed

[20] Persu A., Stoenoiu M.S., Messiaen T., Davila S., Robino C., El-Khattabi O., et al., Modifier effect of ENOS in autosomal dominant polycystic kidney disease, Hum. Mol. Genet., 2002, 11, 229–241 http://dx.doi.org/10.1093/hmg/11.3.22910.1093/hmg/11.3.229Search in Google Scholar PubMed

[21] Zago A.S., Park J.Y., Fenty-Stewart N., Silveira L.R., Kokubun E., Brown M.D., Effects of aerobic exercise on the blood pressure, oxidative stress and eNOS gene polymorphism in pre-hypertensive older people, Eur. J. Appl. Physiol., 2010, 110, 825–832 http://dx.doi.org/10.1007/s00421-010-1568-610.1007/s00421-010-1568-6Search in Google Scholar PubMed

[22] Rankinen T., Rice T., Pérusse L., Chagnon Y.C., Gagnon J., Leon A.S., et al., NOS3 Glu298Asp genotype and blood pressure response to endurance training: the HERITAGE family study, Hypertension, 2000, 36, 885–889 http://dx.doi.org/10.1161/01.HYP.36.5.88510.1161/01.HYP.36.5.885Search in Google Scholar

[23] Hand B.D., McCole S.D., Brown M.D., Park J.J., Ferrell R.E., Huberty A., et al., NOS3 gene polymorphisms and exercise hemodynamics in postmenopausal women, Int. J. Sports Med., 2006, 27, 951–958 http://dx.doi.org/10.1055/s-2006-92390110.1055/s-2006-923901Search in Google Scholar PubMed

[24] Rezende T.M., Sponton C.H.G., Malagrino P.A., Bezerra M.A.C., Penteado C.F.F., Zanesco A., Effect of exercise training on the cardiovascular and biochemical parameters in women with eNOS gene polymorphism, Arch. Physiol. Biochem., 2011, 117, 265–269. http://dx.doi.org/10.3109/13813455.2011.59654810.3109/13813455.2011.596548Search in Google Scholar PubMed

[25] Silva B.M., Neves F.J., Negro M.V., Alves C.R., Dias R.G., Alves G.B., et al., Endothelial nitric oxide synthase polymorphisms and adaptation of parasympathetic modulation to exercise training, Med. Sci. Sports Exerc., 2011, 43, 1611–1618 http://dx.doi.org/10.1249/MSS.0b013e318215219710.1249/MSS.0b013e3182152197Search in Google Scholar PubMed

[26] Neves F.J., Silva B.M., Rocha N.G., Sales A.R.K., Ribeiro G.S., Nóbrega A.C., Effect of the 894G>T polymorphism of the endothelial nitric oxide synthase on vascular reactivity following maximal dynamic exercise, J. Hypertens., 2010, 28, 764–770 http://dx.doi.org/10.1097/HJH.0b013e328334f55c10.1097/HJH.0b013e328334f55cSearch in Google Scholar PubMed

[27] Dias R.G., Alves M.J.N.N., Pereira A.C., Rondon M.U.P.B., Dos Santos M.R., Krieger J.E., et al., Glu298Asp eNOS gene polymorphism causes attenuation in nonexercising muscle vasodilatation, Physiol. Genomics, 2009, 37, 99–107 http://dx.doi.org/10.1152/physiolgenomics.90368.200810.1152/physiolgenomics.90368.2008Search in Google Scholar PubMed

[28] Drozdovska S.B., Dosenko V.E., Ilyin V.N., Filippov M.M., Kuzmina L.M., Allelic polymorphism of endothelial NO-synthase (eNOS) association with exercise-induced hypoxia adaptation, BJPHA., 2009, 1, 13–19 10.2478/v10131-009-0001-1Search in Google Scholar

[29] Bescós R., Sureda A., Tur J.A., Pons A., The effect of nitric-oxide-related supplements on human performance, Sports Med., 2012, 42, 99–117 http://dx.doi.org/10.2165/11596860-000000000-0000010.2165/11596860-000000000-00000Search in Google Scholar PubMed

[30] Saunders C.J., Xenophontos S.L., Cariolou M.A., Anastassiades L.C., Noakes T.D., Collins M., The bradykinin beta 2 receptor (BDKRB2) and endothelial nitric oxide synthase 3 (NOS3) genes and endurance performance during Ironman Triathlons, Hum. Mol. Genet., 2006, 15, 979–987 http://dx.doi.org/10.1093/hmg/ddl01410.1093/hmg/ddl014Search in Google Scholar PubMed

[31] Gómez-Gallego F., Ruiz J.R., Buxens A., Artieda M., Arteta D., Santiago C., et al., The -786 T/C polymorphism of the NOS3 gene is associated with elite performance in power sports, Eur. J. Appl. Physiol., 2009, 107, 565–569 http://dx.doi.org/10.1007/s00421-009-1166-710.1007/s00421-009-1166-7Search in Google Scholar PubMed

[32] Sessa F., Chetta M., Petito A., Franzetti M., Bafunno V., Pisanelli D., et al. Gene polymorphisms and sport attitude in Italian athletes, Genet. Test Mol. Biomarkers, 2011, 15, 285–290 http://dx.doi.org/10.1089/gtmb.2010.017910.1089/gtmb.2010.0179Search in Google Scholar

[33] Eynon N., Ruiz J.R., Yvert T., Santiago C., Gómez-Gallego F., Lucia A., et al., The C Allele in NOS3 -786 T/C Polymorphism is Associated with Elite Soccer Player’s Status, Int. J. Sports Med., 2012, 33, 521–524 http://dx.doi.org/10.1055/s-0032-130633710.1055/s-0032-1306337Search in Google Scholar

[34] Cieszczyk P., Sawczuk M., Maciejewska A., Eider J., Do G894T polymorphisms of endothelial nitric oxide synthase 3 (NOS3) influence endurance phenotypes?, J. Human Kin., 2012, 24, 73–78 10.2478/v10078-010-0022-5Search in Google Scholar

[35] Buxens A., Ruiz J.R., Arteta D., Artieda M., Santiago C., González-Freire M., et al., Can we predict top-level sports performance in power vs endurance events?, A genetic approach. Scand. J. Med. Sci. Sports, 2011, 21, 570–579 http://dx.doi.org/10.1111/j.1600-0838.2009.01079.x10.1111/j.1600-0838.2009.01079.xSearch in Google Scholar

[36] Gronek P., Holdys J., Konarski J., Krysciak J., Wolc A., ACE ID genotype in professional field hockey players, Trends in Sport Sciences, 2013, 1, 36–40 Search in Google Scholar

[37] Sawczuk M., Maciejewska-Karlowska A. Cieszczyk P., A single nucleotide polymorphism rs553668 in ADRA2A gene and the status of Polish elite endurance athletes, Trends in Sport Sciences, 2013, 1, 30–35 Search in Google Scholar

[38] Ahmetov I.I., Williams A.G., Popov D.V., Lyubaeva E.V., Hakimullina A.M., Fedotovskaya O.N., et al., The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes, Hum. Genet., 2009, 126, 751–761 http://dx.doi.org/10.1007/s00439-009-0728-410.1007/s00439-009-0728-4Search in Google Scholar

[39] Druzhevskaya A.M., Ahmetov I.I., Astratenkova I.V., Rogozkin V.A., Association of the ACTN3 R577X polymorphism with power athlete status in Russians, Eur. J. Appl. Physiol., 2008, 103, 631–634 http://dx.doi.org/10.1007/s00421-008-0763-110.1007/s00421-008-0763-1Search in Google Scholar

[40] Garland T.Jr., Bennett A.F., Daniels C.B., Heritability of locomotor performance and its correlates in a natural population, Experientia, 1990, 46, 530–533 http://dx.doi.org/10.1007/BF0195425710.1007/BF01954257Search in Google Scholar

[41] Moon J., Yoon S., Kim E., Shin C., Jo S.A., Jo I., Lack of evidence for contribution of Glu298Asp (G894T) polymorphism of endothelial nitric oxide synthase gene to plasma nitric oxide levels, Thromb. Res., 2002, 107, 129–134 http://dx.doi.org/10.1016/S0049-3848(02)00208-610.1016/S0049-3848(02)00208-6Search in Google Scholar

[42] Jíra M., Závodná E., Honzíková N., Nováková Z., Vašků A., Izakovičová Hollá L., et al., Association of eNOS gene polymorphisms T-786C and G894T with blood pressure variability in man, Physiol. Res., 2011, 60, 193–197 10.33549/physiolres.931887Search in Google Scholar

[43] Rossi G.P., Cesari M., Zanchetta M., Colonna S., Maiolino G., Pedon L., et al., The T-786C endothelial nitric oxide synthase genotype is a novel risk factor for coronary artery disease in Caucasian patients of the GENICA study, J. Am. Coll. Cardiol., 2003, 41, 930–937 http://dx.doi.org/10.1016/S0735-1097(02)03012-710.1016/S0735-1097(02)03012-7Search in Google Scholar

[44] Naber C.K., Frey U.H., Oldenburg O., Brauck K., Eggebrecht H., Schmermund A., et al., Relevance of the NOS3 T-786C and G894T variants for cholinergic and adrenergic coronary vasomotor responses in man, Basic. Res. Cardiol., 2005, 100, 453–460 http://dx.doi.org/10.1007/s00395-005-0530-y10.1007/s00395-005-0530-ySearch in Google Scholar PubMed

[45] Palmer R.M., Ferrige A.G., Moncada S., Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 1987, 327, 524–526 http://dx.doi.org/10.1038/327524a010.1038/327524a0Search in Google Scholar PubMed

[46] Smith L.W., Smith J.D., Criswell D.S., Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload, J. Appl. Physiol., 2002, 92, 2005–2011 10.1152/japplphysiol.00950.2001Search in Google Scholar PubMed

[47] Leiter J.R.S., Upadhaya R., Anderson J.E., Nitric oxide and voluntary exercise together promote quadriceps hypertrophy and increase vascular density in female 18-mo-old mice, Am. J. Physiol. Cell Physiol., 2012, 302, C1306–1315 http://dx.doi.org/10.1152/ajpcell.00305.201110.1152/ajpcell.00305.2011Search in Google Scholar PubMed

[48] Sellman J.E., DeRuisseau K.C., Betters J.L., Lira V.A., Soltow Q.A., Selsby J.T., et al., In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle, J. Appl. Physiol., 2006, 100, 258–265 http://dx.doi.org/10.1152/japplphysiol.00936.200510.1152/japplphysiol.00936.2005Search in Google Scholar PubMed

[49] Soltow Q.A., Lira V.A., Betters J.L., Long J.H.D., Sellman J.E., Zeanah E.H., et al., Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts, J. Muscle Res. Cell Motil., 2010, 31, 215–225 http://dx.doi.org/10.1007/s10974-010-9227-410.1007/s10974-010-9227-4Search in Google Scholar PubMed

[50] Salanova M., Schiffl G., Püttmann B., Schoser B.G., Blottner D. Molecular biomarkers monitoring human skeletal muscle fibres and microvasculature following long-term bed rest with and without countermeasures, J. Anat., 2008, 212, 306–318 http://dx.doi.org/10.1111/j.1469-7580.2008.00854.x10.1111/j.1469-7580.2008.00854.xSearch in Google Scholar PubMed PubMed Central

[51] Choudhry S., Avila P.C., Nazario S., Ung N., Kho J., Rodriguez-Santana JR., et al., CD14 tobacco geneenvironment interaction modifies asthma severity and immunoglobulin E levels in Latinos with asthma, Am. J. Respir. Crit. Care. Med. 2005, 172, 173–182 http://dx.doi.org/10.1164/rccm.200409-1232OC10.1164/rccm.200409-1232OCSearch in Google Scholar PubMed

[52] Berger M., Stassen H.H., Köhler K., Krane V., Mönks D., Wanner C., et al., Hidden population substructures in an apparently homogeneous population bias association studies, Eur. J. Hum. Genet., 2006, 14, 236–244 http://dx.doi.org/10.1038/sj.ejhg.520154610.1038/sj.ejhg.5201546Search in Google Scholar PubMed

Published Online: 2013-12-13
Published in Print: 2014-3-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-013-0254-1/html
Scroll to top button