Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 28, 2013

A way to identify archaellins in Halobacterium salinarum archaella by FLAG-tagging

  • Sergei Beznosov EMAIL logo , Michael Pyatibratov , Pavan Veluri , Sagar Mitra and Oleg Fedorov
From the journal Open Life Sciences

Abstract

In the current study, haloarchaea Halobacterium salinarum cells were transformed individually with each of the modified archaellin genes (flaA1, flaA2 and flaB2) containing an oligonucleotide insert encoding the FLAG peptide (DYKDDDDK). The insertion site was selected to expose the FLAG peptide on the archaella filament surface. Three types of transformed cells synthesizing archaella, containing A1, A2, or B2 archaellin modified with FLAG peptide were obtained. Electron microscopy of archaella has demonstrated that in each case the FLAG peptide is available for the specific antibody binding. It was shown for the first time that the B2 archaellin, like archaellins A1 and A2, is found along the whole filament length.

[1] Jarrell K.F., Albers S.V., The archaellum: an old motility structure with a new name, Trends Microbiol., 2012, 20, 307–312 http://dx.doi.org/10.1016/j.tim.2012.04.00710.1016/j.tim.2012.04.007Search in Google Scholar

[2] Bayley D.P., Jarrell K.F., Further evidence to suggest that archaeal flagella are related to bacterial type IV pili, J. Mol. Evol., 1998, 46, 370–373 Search in Google Scholar

[3] Ng S.Y.M., Chaban B., Jarrell K.F., Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications, J. Mol. Microbiol. Biotechnol., 2006, 11, 167–1691 http://dx.doi.org/10.1159/00009405310.1159/000094053Search in Google Scholar

[4] Bardy S.L., Jarrell K.F., Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae, Mol. Microbiol., 2003, 50, 1339–1347 http://dx.doi.org/10.1046/j.1365-2958.2003.03758.x10.1046/j.1365-2958.2003.03758.xSearch in Google Scholar

[5] Syutkin A.S., Pyatibratov M.G., Beznosov S.N., Fedorov O.V., Various mechanisms of flagella helicity formation in haloarchaea, Microbiology (Russ.), 2012, 81, 573–581 http://dx.doi.org/10.1134/S002626171205015310.1134/S0026261712050153Search in Google Scholar

[6] Pyatibratov M.G., Beznosov S.N., Rachel R., Tiktopulo E.I., Surin A.K., Syutkin A.S., et al., Alternative flagellar filament types in the haloarchaeon Haloarcula marismortui, Can. J. Microbiol., 2008, 54, 835–844 http://dx.doi.org/10.1139/W08-07610.1139/W08-076Search in Google Scholar

[7] Calladine C.R., Change of waveform in bacterial flagella: The role of mechanics at the molecular level, J. Mol. Biol., 1978, 118, 457–479 http://dx.doi.org/10.1016/0022-2836(78)90285-110.1016/0022-2836(78)90285-1Search in Google Scholar

[8] Tarasov V.Y., Pyatibratov M.G., Tang S.L., Dyall-Smith M., Fedorov O.V., Role of flagellins from A and B loci in flagella formation of Halobacterium salinarum, Mol. Microbiol., 2000, 35, 69–78 http://dx.doi.org/10.1046/j.1365-2958.2000.01677.x10.1046/j.1365-2958.2000.01677.xSearch in Google Scholar PubMed

[9] Tarasov V.Y., Pyatibratov M.G., Beznosov S.N., Fedorov O.V., On the supramolecular organization of the flagellar filament in archaea, Dokl. Biochem. Biophys., 2004, 396, 203–205 http://dx.doi.org/10.1023/B:DOBI.0000033530.66078.a610.1023/B:DOBI.0000033530.66078.a6Search in Google Scholar

[10] Jarrell K.F., Bayley D.P., Florian V., Klein A., Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus voltae, Mol. Microbiol., 1996, 20, 657–666 http://dx.doi.org/10.1046/j.1365-2958.1996.5371058.x10.1046/j.1365-2958.1996.5371058.xSearch in Google Scholar PubMed

[11] Bardy S.L., Mori T., Komoriya K., Aizawa S., Jarrell K.F., Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae, J. Bacteriol., 2002, 184, 5223–5233 http://dx.doi.org/10.1128/JB.184.19.5223-5233.200210.1128/JB.184.19.5223-5233.2002Search in Google Scholar PubMed PubMed Central

[12] Gerl L., Sumper M., Halobacterial flagellins are encoded by a multigene family. Characterization of five flagellin genes, J. Biol. Chem., 1988, 263, 13246–13251 10.1016/S0021-9258(18)37697-XSearch in Google Scholar

[13] Gerl L., Deutzmann R., Sumper M., Halobacterial flagellins are encoded by a multigene family. Identification of all five gene products, FEBS Lett., 1989, 244, 137–140 http://dx.doi.org/10.1016/0014-5793(89)81179-210.1016/0014-5793(89)81179-2Search in Google Scholar

[14] Beznosov S.N., Piatibratov M.G., Fedorov O.V., On the multicomponent nature of Halobacterium salinarum flagella, Microbiology (Russ.), 2007, 76, 435–441 http://dx.doi.org/10.1134/S002626170704008X10.1134/S002626170704008XSearch in Google Scholar

[15] Trachtenberg S., Cohen-Krausz S., The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure, J. Mol. Microbiol. Biotechnol., 2006, 11, 208–220 http://dx.doi.org/10.1159/00009405510.1159/000094055Search in Google Scholar

[16] Beznosov S.N., Pyatibratov M.G., Fedorov O.V., Archaeal flagella as matrices for new nanomaterials, Nanotechnol. Russ, 2009, 4, 373–378 http://dx.doi.org/10.1134/S199507800905016410.1134/S1995078009050164Search in Google Scholar

[17] Sambrook J., Russell D.W., Molecular cloning — a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001 Search in Google Scholar

[18] Inoue H., Nojima H., Okayama H., High-efficiency transformation of Escherichia coli with plasmids, Gene, 1990, 96, 23–28 http://dx.doi.org/10.1016/0378-1119(90)90336-P10.1016/0378-1119(90)90336-PSearch in Google Scholar

[19] Nam K.T., Kim D.W., Yoo P.J., Chiang C.Y., Meethong N., Hammond P.T., et al., Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science, 2006, 312, 885–888 http://dx.doi.org/10.1126/science.112271610.1126/science.1122716Search in Google Scholar

[20] Cline S.W., Lam W.L., Charlebois R.L., Schalkwyk L.C., Doolittle W.F., Transformation methods for halophilic archaebacteria, Can. J. Microbiol., 1989, 35, 148–152 http://dx.doi.org/10.1139/m89-02210.1139/m89-022Search in Google Scholar

[21] Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227, 680–685 http://dx.doi.org/10.1038/227680a010.1038/227680a0Search in Google Scholar

[22] Wieland F., Lechner J., Sumper M., Halobacterial flagellins are sulfated glycoproteins, J. Biol. Chem., 1985, 260, 15180–15185 10.1016/S0021-9258(18)95719-4Search in Google Scholar

[23] Szymanska G., O’Connor M.B., O’Connor C.M., Construction of an epitope-tagged calmodulin useful for the analysis of calmodulin-binding proteins: addition of a hemagglutinin epitope does not affect calmodulin-dependent activation of smooth muscle myosin light chain kinase, Anal. Biochem., 1997, 252, 96–105 http://dx.doi.org/10.1006/abio.1997.231910.1006/abio.1997.2319Search in Google Scholar PubMed

Published Online: 2013-6-28
Published in Print: 2013-9-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-013-0202-0/html
Scroll to top button