Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 10, 2012

Cellular responses of two Latin-American cultivars of Lotus corniculatus to low pH and Al stress

  • Peter Paľove-Balang EMAIL logo , Milada Čiamporová , Veronika Zelinová , Ján Pavlovkin , Erika Gurinová and Igor Mistrík
From the journal Open Life Sciences

Abstract

Toxic effects of acidic root medium and aluminium were evaluated in two forage cultivars of Lotus corniculatus differing in their tolerance to Al stress. The structural response of most of the root cells exposed to low pH without Al3+ differed markedly from that induced by the combined stress. Conspicuous alteration of the nucleus was present only at low pH 4.0 and disintegration of the cytoplasmic components was more drastic than in the roots exposed to acidic solution containing Al3+. Cells exposed to low pH without Al, did not produce wall thickenings. Severely damaged cytoplasm and localized death in some cortical cells or groups of cells contrasting with almost intact cells exposed to Al3+ stress were found. In this respect, a strong correlation between the occurrence of cell wall thickenings and a better preserved structure of the cytoplasm was observed. The frequency of cell damage in the more tolerant cultivar UFRGS was generally lower, significantly more cortical cells capable of maintaining their resting membrane potential were present than in the sensitive INIA Draco. The difference in their tolerance is related rather to the exudation of citrate and oxalate that was higher in UFRGS than to the accumulation of tannins, which increased after Al treatment in both cultivars.

[1] Blumenthal M., McGraw R., Lotus adaptation, use and management, In: Beuselinck P., (Ed.), Trefoil: The science and technology of Lotus, American Society of Agronomy, Madison, USA, 1999 Search in Google Scholar

[2] Díaz P., Borsani O., Monza J., Lotus related species and their agronomic importance, In: Márquez A.J. (Ed.), Lotus japonicus handbook, Dordrecht: Springer, Dodrecht, Netherlands, 2005 Search in Google Scholar

[3] von Uexkull H.R., Mutert E., Global extent, development and economic impact of acid soils. In: Date R.A., Grundon, N.J., Raymet, M.E., Probert M.E. (Eds.), Plant-Soil Interactions at low pH: Principles and Management. Kluwer Academic Publisher, Dodrecht, Netherlands, 1995 Search in Google Scholar

[4] Kochian L.V., Cellular mechanisms of aluminium toxicity and resistance in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, 46, 237–260 http://dx.doi.org/10.1146/annurev.pp.46.060195.00132110.1146/annurev.pp.46.060195.001321Search in Google Scholar

[5] Yamamoto Y., Profile of modern soil and plant nutrition science (7). Plant growth inhibition mechanism by aluminum ion in acid soil, Agr. Hort., 2001, 76, 819–828 Search in Google Scholar

[6] Rout G.R., Samantaray S., Das P., Aluminium toxicity in plants: a review, Agronomie, 2001, 21, 3–21 http://dx.doi.org/10.1051/agro:200110510.1051/agro:2001105Search in Google Scholar

[7] Vázquez M.D., Aluminum exclusion mechanism in root tips of maize (Zea mays L.): lysigeny of aluminum hyperaccumulator cells, Plant Biol., 2002, 4, 234–249 http://dx.doi.org/10.1055/s-2002-2573610.1055/s-2002-25736Search in Google Scholar

[8] Panda S.K., Yamamoto, Y., Kondo, H., Matsumoto, H., Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress, C.R. Biologies, 2008, 331, 597–610 http://dx.doi.org/10.1016/j.crvi.2008.04.00810.1016/j.crvi.2008.04.008Search in Google Scholar PubMed

[9] Prabagar S., Hodson M., Evans D.E., Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.), Environ. Exp. Bot., 2011, 70, 266–276 http://dx.doi.org/10.1016/j.envexpbot.2010.10.00110.1016/j.envexpbot.2010.10.001Search in Google Scholar

[10] Rengel Z., Zhang W.H., Role of dynamics of intracellular calcium in aluminium toxicity syndrome, New Phytol., 2003, 159, 295–314 http://dx.doi.org/10.1046/j.1469-8137.2003.00821.x10.1046/j.1469-8137.2003.00821.xSearch in Google Scholar PubMed

[11] Nagy N.E., Dalen L.S., Jones D.L., Swensen, B., Fossdal, C.G., Eldhuset, T.D., Cytological and enzymatic responses to aluminium stress in root tips of Norway spruce seedlings, New Phytol., 2004, 163, 595–607 http://dx.doi.org/10.1111/j.1469-8137.2004.01134.x10.1111/j.1469-8137.2004.01134.xSearch in Google Scholar PubMed

[12] Eticha D., Stass A., Horst W.J., Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance, Plant Cell Environ., 2005, 28, 1410–1420 http://dx.doi.org/10.1111/j.1365-3040.2005.01375.x10.1111/j.1365-3040.2005.01375.xSearch in Google Scholar

[13] Tahara K., Norisada M., Hogetsu T., Kojima K., Aluminum tolerance and aluminum-induced deposition of callose and lignin in the root tips of Melaleuca and Eucalyptus species, J. For. Res., 2005, 10, 325–333 http://dx.doi.org/10.1007/s10310-005-0153-z10.1007/s10310-005-0153-zSearch in Google Scholar

[14] Pan W., Shou J., Zhou X., Zha X., Guo T., Zhu M., et al., Al-induced cell wall hydroxyproline-rich glycoprotein accumulation is involved in alleviating Al toxicity in rice, Acta Physiol. Plant., 2011, 33, 601–608 http://dx.doi.org/10.1007/s11738-010-0684-610.1007/s11738-010-0684-6Search in Google Scholar

[15] Vitorello V.A., Capaldi F,R., Stefanuto V.A., Recent advances in aluminum toxicity and resistance in higher plants, Braz. J. Plant Physiol., 2005, 17, 129–143 http://dx.doi.org/10.1590/S1677-0420200500010001110.1590/S1677-04202005000100011Search in Google Scholar

[16] Pavlovkin J., Pal’ove-Balang P., Kolarovič L., Zelinová V., Growth and functional responses of different cultivars of Lotus corniculatus to aluminum and low pH stress, J. Plant Physiol., 2009, 166, 1479–1487 http://dx.doi.org/10.1016/j.jplph.2009.03.00510.1016/j.jplph.2009.03.005Search in Google Scholar

[17] Bose J., Babourina O., Shabala S., Rengel Z., Aluminum-dependent dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses, Physiol. Plantarum, 2010, 139, 401–412 10.1111/j.1399-3054.2010.01377.xSearch in Google Scholar

[18] Koyama H., Toda T., Hara T., Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: pectin-Ca interaction may play an important role in proton rhizotoxicity, J. Exp. Bot., 2001, 52, 361–368 http://dx.doi.org/10.1093/jexbot/52.355.36110.1093/jexbot/52.355.361Search in Google Scholar

[19] Larger I., Andreasson O., Dunbar T.L., Andreasson E., Escobar M.A., Rasmusson A.G., Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses, Plant Cell Environ., 2010, 33, 1513–1528 10.1111/j.1365-3040.2010.02161.xSearch in Google Scholar

[20] Zelinová V., Halušková Ľ., Huttová J., Illéš P., Mistrík I., Valentovičová K., et al., Short-term aluminiuminduced changes in barley root tips, Protoplasma 2011, 248, 523–530 http://dx.doi.org/10.1007/s00709-010-0199-410.1007/s00709-010-0199-4Search in Google Scholar

[21] Barceló J., Poschenrieder C., Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review, Environ. Exp. Bot., 2002, 48, 75–92 http://dx.doi.org/10.1016/S0098-8472(02)00013-810.1016/S0098-8472(02)00013-8Search in Google Scholar

[22] Tolrá R., Barceló J., Poschenrieder C., Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance, J. Inorg. Biochem., 2009, 103, 1486–1490 http://dx.doi.org/10.1016/j.jinorgbio.2009.06.01310.1016/j.jinorgbio.2009.06.013Search in Google Scholar PubMed

[23] Kinraide T.B., Parker D.R., Zobel R.W., Organic acid secretion as a mechanism of aluminium toxicity and tolerance in higher plants: a model incorporation the root cortex, epidermis and the external unstirred layer, J. Exp. Bot., 2005, 56, 1853–1865 http://dx.doi.org/10.1093/jxb/eri17510.1093/jxb/eri175Search in Google Scholar PubMed

[24] Delhaize E., Gruber B.D., Ryan P.R., The roles of organic anion permeases in aluminium resistance and mineral nutrition, FEBS Lett., 2007, 581, 2255–2262 http://dx.doi.org/10.1016/j.febslet.2007.03.05710.1016/j.febslet.2007.03.057Search in Google Scholar PubMed

[25] Handberg K., Stougaard J., Lotus japonicus diploid legume species for classical and molecular genetics, Plant J., 1992, 2, 487–496 http://dx.doi.org/10.1111/j.1365-313X.1992.00487.x10.1111/j.1365-313X.1992.00487.xSearch in Google Scholar

[26] Pavlovkin J., Mistrík I., Zajchenko A.M., Dugovič L., Some aspects of phytotoxic action of trichothecene mycotoxin roridin H on corn roots, Biologia, 1993, 48, 435–439 Search in Google Scholar

[27] Edmeades D.C., Blamey F.P.C., Asher C.J., Edwards D.G., Effects of pH and aluminium on the growth of temperate pasture species. II. Growth and nodulation of legumes, Aust. J. Agricult. Res., 1991, 42, 893–900 http://dx.doi.org/10.1071/AR991089310.1071/AR9910893Search in Google Scholar

[28] Correa O.S., Aranda A., Barneix A.J., Effects of pH on growth and nodulation of two forage legumes, J. Plant Nutr., 2001, 24, 1367–1375 http://dx.doi.org/10.1081/PLN-10010698710.1081/PLN-100106987Search in Google Scholar

[29] Abreu Jr. C.H., Muraoka T., Lavorante A. F., Exchangeable aluminum evaluation in acid soils, Sci. Agr., 2003, 60, 543–548 10.1590/S0103-90162003000300020Search in Google Scholar

[30] Probst A., Liu H., Fanjul M., Liao B., Hollande E., Response of Vicia faba L. to metal toxicity on mine tailing substrate: Geochemical and morphological changes in leaf and root, Environ. Exp. Bot., 2009, 66, 297–308 http://dx.doi.org/10.1016/j.envexpbot.2009.02.00310.1016/j.envexpbot.2009.02.003Search in Google Scholar

[31] Pan J., Zhu M., Chen H., Aluminum-induced cell death in root-tip cells of barley, Environ. Exp. Bot., 2001, 46, 71–79 http://dx.doi.org/10.1016/S0098-8472(01)00083-110.1016/S0098-8472(01)00083-1Search in Google Scholar

[32] Delisle G., Champoux M., Houde M., Characterization of Oxalate Oxidase and Cell Death in Al-Sensitive and Tolerant Wheat Roots, Plant Cell Physiol., 2001, 42, 324–333 http://dx.doi.org/10.1093/pcp/pce04110.1093/pcp/pce041Search in Google Scholar PubMed

[33] Panda S.K., Matsumoto H., Molecular physiology of aluminum toxicity and tolerance in plants, Bot. Rev., 2007, 73, 326–347 http://dx.doi.org/10.1663/0006-8101(2007)73[326:MPOATA]2.0.CO;2Search in Google Scholar

[34] Schmohl N., Horst W.J., Cell wall pectin content modulates aluminium sensitivityof Zea mays (L.) cells grown in suspension culture, Plant Cell Environ., 2000, 23, 735–742 http://dx.doi.org/10.1046/j.1365-3040.2000.00591.x10.1046/j.1365-3040.2000.00591.xSearch in Google Scholar

[35] Jones D.L., Blancaflor E.B., Kochian L.V., Gilroy S., Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots, Plant Cell Environ., 2006, 29, 1309–1318 http://dx.doi.org/10.1111/j.1365-3040.2006.01509.x10.1111/j.1365-3040.2006.01509.xSearch in Google Scholar PubMed

[36] Stoutjesdijk P.A., Sale P.W., Larkin P.J., Possible involvement of condensed tannins in aluminium tolerance of Lotus pedunculatus, Aust. J. Plant Physiol., 2001, 28, 1063–1074 10.1071/PP01012Search in Google Scholar

[37] Osawa H., Endo I., Hara Y., Matsushima Y., Tange T., Transient Proliferation of Proanthocyanidin-Accumulating Cells on the Epidermal Apex Contributes to Highly Aluminum-Resistant Root Elongation in Camphor Tree, Plant Physiol., 2011, 155, 433–446 http://dx.doi.org/10.1104/pp.110.16696710.1104/pp.110.166967Search in Google Scholar PubMed PubMed Central

[38] Wang J.-P., Raman H., Zhang G.-P. Mendham N., Zhou M.-X., Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods, J. Zhenjang Univ. Sci. B, 2006, 7, 1862–1783 10.1631/jzus.2006.B0769Search in Google Scholar PubMed PubMed Central

[39] Zhao Z.Q., Ma J.F., Sato K., Takeda K., Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.), Planta, 2006, 217, 794–800 http://dx.doi.org/10.1007/s00425-003-1043-210.1007/s00425-003-1043-2Search in Google Scholar PubMed

[40] Silva I.R., Smyth T.J., Raper C.D., Carter T.E., Rufty T.W., Differential aluminum tolerance in soybean: An evaluation of the role of organic acids, Physiol. Plantarum, 2001, 112, 200–210 http://dx.doi.org/10.1034/j.1399-3054.2001.1120208.x10.1034/j.1399-3054.2001.1120208.xSearch in Google Scholar PubMed

Published Online: 2012-10-10
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-012-0098-0/html
Scroll to top button