Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 4, 2011

Biodegradation kinetics of 2,4-D by bacterial strains isolated from soil

  • Mariusz Cycoń EMAIL logo , Agnieszka Żmijowska and Zofia Piotrowska-Seget
From the journal Open Life Sciences

Abstract

The aim of the study was to characterize the 2,4-dichlorophenoxyacetic acid (2,4-D) degradative potential of three bacterial strains identified by MIDI-FAME profiling as Burkholderia cepacia (DS-1), Pseudomonas sp. (DS-2) and Sphingomonas paucimobilis (DS-3) isolated from soil with herbicide treatment history. All strains were capable of using herbicide as the only source of carbon and energy when grown in mineral salt medium (MSM) containing 2,4-D (50 mg/l). Over a 10 day incubation period, 69%, 73% and 54% of the initial dose of 2,4-D were degraded by strains DS-1, DS-2 and DS-3, respectively. Analysis of 2,4-dichlorophenol (2,4-DCP) concentration, the main metabolite of 2,4-D degradation, revealed that strains DS-1 and DS-2 may also have the potential to metabolize this compound. The percentage of 2,4-DCP removal was 67% and 77% in relation to maximum values of 9.5 and 9.2 mg/l determined after 4 and 2 days for MSM+DS-1 and MSM+DS-2, respectively. The degradation kinetics of 2,4-D (50 mg/kg) in sterile soil (SS) showed different potential of tested strains to degrade 2,4-D. The times within which the initial 2,4-D concentration was reduced by 50% (DT50) were 6.3, 5.0 and 9.4 days for SS+DS-1, SS+DS-2 and SS+DS-3, respectively.

[1] Grossmann K., Mode of action of auxin herbicides: a new ending to a long, drawn out story, Trends Plant Sci., 2000, 5, 506–508 http://dx.doi.org/10.1016/S1360-1385(00)01791-X10.1016/S1360-1385(00)01791-XSearch in Google Scholar

[2] Kelley K.B., Riechers D.E., Recent developments in auxin biology and new opportunities for auxinic herbicide research, Pest. Biochem. Physiol., 2007, 89, 1–11 http://dx.doi.org/10.1016/j.pestbp.2007.04.00210.1016/j.pestbp.2007.04.002Search in Google Scholar

[3] Wilson W.D., Geronimo J.J., Armbruster A., 2,4-D dissipation in field soils after application of 2,4-D dimethylamine salt and 2,4-D 2-ethylhexyl ester, Environ. Toxicol. Chem., 1997, 16, 1236–1246 http://dx.doi.org/10.1002/etc.562016062010.1002/etc.5620160620Search in Google Scholar

[4] Gaultier J.D., Farenhorst A., 2,4-D mineralization in soil profiles of a cultivated hummocky landscape in Manitoba, Canada, J. Environ. Sci. Health B, 2007, 42, 255–264 http://dx.doi.org/10.1080/0360123070122914810.1080/03601230701229148Search in Google Scholar PubMed

[5] Fu F.F., Xiao L.X., Wang W., Xu X.Q., Xu L.J., Qi G.M., et al., Study on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-chloro-phenoxyacetic sodium (MCPA sodium) in natural agriculture-soil of Fuzhou, China using capillary electrophoresis, Sci. Total Environ., 2009, 407, 1998–2003 http://dx.doi.org/10.1016/j.scitotenv.2008.11.02310.1016/j.scitotenv.2008.11.023Search in Google Scholar PubMed

[6] Bollag J.M., Hellings C.S., Alexander M., 2,4-D metabolism: enzymatic hydroxylation of chlorinated phenols, J. Agric. Food Chem., 1968, 16, 826–828 http://dx.doi.org/10.1021/jf60159a03710.1021/jf60159a037Search in Google Scholar

[7] Greer L.E., Shelton D.R., Effect of inoculant strain and organic matter content on kinetics of 2,4-dichlorophenoxyacetic acid degradation in soil, Appl. Environ. Microbiol., 1992, 58, 1459–1465 10.1128/aem.58.5.1459-1465.1992Search in Google Scholar PubMed PubMed Central

[8] Crosby D.G., Tutass H.O., Photodecomposition of 2,4-dichlorophenoxyacetic acid, J. Agric. Food Chem., 1966, 14, 596–599 http://dx.doi.org/10.1021/jf60148a01210.1021/jf60148a012Search in Google Scholar

[9] Voos G., Groffman P.M., Relationships between microbial biomass and dissipation of 2,4-D and dicamba in soil, Biol. Fertil. Soils, 1997, 24, 106–110 http://dx.doi.org/10.1007/BF0142022910.1007/BF01420229Search in Google Scholar

[10] Oh K.-H., Tuovinen O.H., Degradation of 2,4-dichlorophenoxyacetic acid by mixed cultures of bacteria, J. Ind. Microbiol., 1990, 6, 275–278 http://dx.doi.org/10.1007/BF0157587310.1007/BF01575873Search in Google Scholar

[11] Shimojo M., Kawakami M., Amada K., Analysis of genes encoding the 2,4-dichlorophenoxyacetic acid-degrading enzyme from Sphingomonas agrestis 58-1, J. Biosci. Bioeng., 2009, 108, 56–59 http://dx.doi.org/10.1016/j.jbiosc.2009.02.01810.1016/j.jbiosc.2009.02.018Search in Google Scholar

[12] Ka J.O., Holben W.E., Tiedje J.M., Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacteria isolated from 2,4-D-treated field soils, Appl. Environ. Microbiol., 1994, 60, 1106–1115 10.1128/aem.60.4.1106-1115.1994Search in Google Scholar

[13] Tonso N.L., Matheson V.G., Holben W.E., Polyphasic characterization of a suite of bacterial isolates capable of degrading 2,4-D, Microbiol. Ecol., 1995, 30, 3–24 http://dx.doi.org/10.1007/BF0018451010.1007/BF00184510Search in Google Scholar

[14] Kamagata Y., Fulthorpe R.R., Tamura K., Takami H., Forney L.J., Tiedje J.M., Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria, Appl. Environ. Microbiol., 1997, 63, 2266–2272 10.1128/aem.63.6.2266-2272.1997Search in Google Scholar

[15] Bælum J., Jacobsen C.S., Holben W.E., Comparison of 16S rRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid degraders, Syst. Appl. Microbiol., 2010, 33, 67–70 http://dx.doi.org/10.1016/j.syapm.2010.01.00110.1016/j.syapm.2010.01.001Search in Google Scholar

[16] Vallaeys T., Fulthorpe R.R., Wright A.M., Soulas G., The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis, FEMS Microbiol. Ecol., 1996, 20, 163–172 http://dx.doi.org/10.1111/j.1574-6941.1996.tb00315.x10.1111/j.1574-6941.1996.tb00315.xSearch in Google Scholar

[17] Bolan N.S., Baskaran S., Biodegradation of 2,4-D herbicide as affected by its adsorption-desorption behavior and microbial activity of soils, Aust. J. Soil Res., 1996, 34, 1041–1053 http://dx.doi.org/10.1071/SR996104110.1071/SR9961041Search in Google Scholar

[18] Marrón-Montiel E., Ruiz-Ordaz N., Rubio-Granados C., Juárez-Ramírez C., Galíndez-Mayer C.J., 2,4-D-degrading bacterial consortium. Isolation, kinetic characterization in batch and continuous culture and application for bioaugmenting an activated sludge microbial community, Proc. Biochem., 2006, 41, 1521–1528 http://dx.doi.org/10.1016/j.procbio.2006.02.01210.1016/j.procbio.2006.02.012Search in Google Scholar

[19] Mohapatra S., Awasthi M.D., Enhancement of carbofuran degradation by soil enrichment cultures, bacterial cultures and by synergistic interaction among bacterial cultures, Pestic. Sci., 1999, 49, 164–168 http://dx.doi.org/10.1002/(SICI)1096-9063(199702)49:2<164::AID-PS518>3.0.CO;2-J10.1002/(SICI)1096-9063(199702)49:2<164::AID-PS518>3.0.CO;2-JSearch in Google Scholar

[20] Bhalerao T.S., Puranik P.R., Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger, Int. Biodeter. Biodegr., 2007, 59, 315–321 http://dx.doi.org/10.1016/j.ibiod.2006.09.00210.1016/j.ibiod.2006.09.002Search in Google Scholar

[21] Cycoń M., Wójcik M., Piotrowska-Seget Z., Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil, Chemosphere, 2009, 76, 494–501 http://dx.doi.org/10.1016/j.chemosphere.2009.03.02310.1016/j.chemosphere.2009.03.023Search in Google Scholar PubMed

[22] Don R.H., Pemberton J.M., Genetic and physical map of the 2,4-dichlorophenoxyacetic aciddegradative plasmid pJP4, J. Bacteriol., 1985, 161, 466–468 10.1128/jb.161.1.466-468.1985Search in Google Scholar PubMed PubMed Central

[23] Wang Y., Wu C., Wang X., Zhou S., The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01, J. Hazard. Mat., 2009, 164, 941–947 http://dx.doi.org/10.1016/j.jhazmat.2008.08.09710.1016/j.jhazmat.2008.08.097Search in Google Scholar PubMed

[24] Fukomori F., Hausinger R.P., Alcahgenes eutrophus JMP134 “2,4-dichlorophenoxyacetate monooxygenase” is an α-ketoglutarate-dependent dioxygenase, J. Bacteriol, 1993, 175, 2083–2086 10.1128/jb.175.7.2083-2086.1993Search in Google Scholar PubMed PubMed Central

[25] Suwa Y., Wright A.D, Fukimori F., Nummy K.N., Hausinger R.P., Holben W.E., et al., Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/α-ketoglutarate dioxygenase from Burkholderia sp. strain RASC, Appl. Environ. Microbiol., 1996, 62, 2464–2469 10.1128/aem.62.7.2464-2469.1996Search in Google Scholar PubMed PubMed Central

[26] McGowan C., Fulthorpe R., Wright A., Tiedje J.M., Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders, Appl. Environ. Microbiol., 1998, 64, 4089–4092 10.1128/AEM.64.10.4089-4092.1998Search in Google Scholar PubMed PubMed Central

[27] DiGiovanni G.D., Neilson J.W., Pepper I.L., Sinclair N.A., Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients, Appl. Microbiol. Biotechnol., 1996, 62, 2521–2526 10.1128/aem.62.7.2521-2526.1996Search in Google Scholar PubMed PubMed Central

[28] Chong N.-M., Chang H.-W., Plasmid as a measure of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid, Biores. Technol., 2009, 100, 1174–1179 http://dx.doi.org/10.1016/j.biortech.2008.09.01610.1016/j.biortech.2008.09.016Search in Google Scholar PubMed

[29] Silva T.M., Stets M.I., Mazzetto A.M., Andrade F.D., Pileggi S.AV., Fávero P.R., et al., Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil, Braz. J. Microbiol., 2007, 38, 522–525 10.1590/S1517-83822007000300026Search in Google Scholar

[30] Johnson W.G., Lavy T.L., Gbur E.E., Sorption, mobility, and degradation of triclopyr and 2,4-D and four soils, Weed Sci., 1995, 43, 678–684 10.1017/S0043174500081820Search in Google Scholar

[31] Singh B.K., Walker A., Denis J., Wright D.J., Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: Influence of different environmental conditions, Soil Biol. Biochem., 2006, 38, 2682–2693 http://dx.doi.org/10.1016/j.soilbio.2006.04.01910.1016/j.soilbio.2006.04.019Search in Google Scholar

[32] Roberts T.R., Hutson D.H., Jewess P.J., Metabolic pathways of agrochemicals: Insecticides and fungicides, Part 2, Royal Society of Chemistry, Great Britain, 1998, 1134–1137 Search in Google Scholar

[33] Karpouzas D.G., Walker A., Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil, Soil Biol. Biochem., 2000, 32, 1753–1762 http://dx.doi.org/10.1016/S0038-0717(00)00093-610.1016/S0038-0717(00)00093-6Search in Google Scholar

[34] Buitrón G., Gonzalez A., Characterization of the microorganisms from an acclimated activated sludge degrading phenolic compounds, Water Sci. Technol., 1996, 34, 289–294 http://dx.doi.org/10.1016/0273-1223(96)00657-910.1016/0273-1223(96)00657-9Search in Google Scholar

[35] Yee D.C., Wood T.K., 2,4-dichlorophenol degradation using Streptomyces viridosporus T7 A lignin peroxidase, Biotechnol. Progr., 1997, 13, 53–59 http://dx.doi.org/10.1021/bp960091x10.1021/bp960091xSearch in Google Scholar

[36] Fahr K., Wetzstein H.G., Grey R., Schlosser D., Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi, FEMS Microbiol. Lett., 1999, 175, 127–162 http://dx.doi.org/10.1111/j.1574-6968.1999.tb13611.x10.1111/j.1574-6968.1999.tb13611.xSearch in Google Scholar

[37] Wang C.C., Lee.M., Kuan C.H., Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitus, Chemosphere, 2000, 41, 447–452 http://dx.doi.org/10.1016/S0045-6535(99)00263-510.1016/S0045-6535(99)00263-5Search in Google Scholar

[38] Xiangchun Q., Shi H., Zhang Y., Wang J., Qian Y., Biodegradation of 2,4-dichlorophenol in an air-lift honeycomb-like ceramic reactor, Proc. Biochem., 2003, 38, 1545–1551 http://dx.doi.org/10.1016/S0032-9592(03)00046-310.1016/S0032-9592(03)00046-3Search in Google Scholar

[39] Kargi F., Eker S., Toxicity and batch biodegradation kinetics of 2,4-dichlorophenol by pure Pseudomonas putida culture, Enz. Microbiol. Technol., 2004, 35, 424–428 http://dx.doi.org/10.1016/j.enzmictec.2004.06.00410.1016/j.enzmictec.2004.06.004Search in Google Scholar

[40] Ning Z., Kennedy K.J., Fernandes L., Anaerobic degradation kinetics of 2,4-dichlorophenol with linear sorption, Water Sci. Technol., 1997, 35, 67–75 10.2166/wst.1997.0484Search in Google Scholar

[41] Ditzelmüller G., Loidl M., Streichsbier F., Isolation and characterization of a 2,4-dichlorophenoxyacetic aciddegrading soil bacterium, Appl. Microbiol. Biotechnol., 1989, 31, 93–96 http://dx.doi.org/10.1007/BF0025253510.1007/BF00252535Search in Google Scholar

[42] Short K.A., Doyle J.D., King R.J., Seidler R.J., Stotzky G., Olsen R.H., Effects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganism-mediated ecological process in soil, Appl. Environ. Microbiol., 1991, 57, 412–418 10.1128/aem.57.2.412-418.1991Search in Google Scholar

[43] Baarschers W.H., Donnelly J.G., Heitland H.S., Microbial toxicity of triclopyr and related herbicides, Toxicol. Assess., 1988, 3, 127–136 http://dx.doi.org/10.1002/tox.254003020410.1002/tox.2540030204Search in Google Scholar

[44] Miethling R., Karlson U., Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP I and Sphingomonas chlorophenolica RA 2, Appl. Environ. Microbiol., 1996, 62, 4361–4366 10.1128/aem.62.12.4361-4366.1996Search in Google Scholar

[45] Rousseaux S., Hartmann A., Lagacherie B., Piutti S., Andreux F., Soulas G., Inoculation of an atrazinedegrading strain, Chelatobacter heintzii Cit 1, in four different soils: effects of different inoculum densities, Chemosphere, 2003, 51, 569–576 http://dx.doi.org/10.1016/S0045-6535(02)00810-X10.1016/S0045-6535(02)00810-XSearch in Google Scholar

[46] Comeau Y., Greer C.W., Samson R., Role of inoculum preparation and density on the bioremediation of 2,4-D contaminated soil by bioagumentation, Appl. Microbiol. Technol., 1993, 38, 681–687 10.1007/BF00182810Search in Google Scholar

[47] Duquenne P., Parekh N.R., Gatroux G., Fournier J.C., Effect of inoculant density, formulation, dispersion and soil nutrient amendment on the removal of carbofuran residues from contaminated soils, Soil Biol. Biochem., 1996, 28, 1805–1811 http://dx.doi.org/10.1016/S0038-0717(96)00287-810.1016/S0038-0717(96)00287-8Search in Google Scholar

[48] Sandman E.R.I.C., Loos M.A., van Dyk L.P., The microbial degradation of 2,4-dichlorophenoxyacetic acid in soil, Rev. Environ. Contam. Toxicol., 1988, 101, 1–53 10.1007/978-1-4612-3770-9_1Search in Google Scholar

[49] Olson B.M., Lindwall C.W., Soil microbial activity under chemical fallow conditions: Effects of 2,4-D and glyphosate, Soil Biol. Biochem., 1991, 23, 1071–1075 http://dx.doi.org/10.1016/0038-0717(91)90046-M10.1016/0038-0717(91)90046-MSearch in Google Scholar

[50] Macur R.E., Wheeler J.T., Burr M.D., Inskeep W.P., Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation, Microbiol. Res., 2007, 162, 37–34 http://dx.doi.org/10.1016/j.micres.2006.05.00710.1016/j.micres.2006.05.007Search in Google Scholar PubMed

Published Online: 2011-2-4
Published in Print: 2011-4-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-011-0005-0/html
Scroll to top button