Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 20, 2010

Low-dose ionizing radiation effects on differentiation of HL-60 cells

  • Jurate Savickiene EMAIL logo , Grazina Treigyte , Ceslava Aleksandraviciene and Ruta Navakauskiene
From the journal Open Life Sciences

Abstract

The biological effects of low-dose radiation have attracted attention, but data are currently insufficient to fully understand the beneficial role of the phenomenon. In the present study, we have investigated the effects of low doses of gamma-irradiation alone and in combination with all-trans-retinoic acid (RA) on proliferation, apoptosis and differentiation of the human promyelocytic leukemia HL-60 cells. Changes in cell behavior and protein expression were determined with the use of light and fluorescent microscopy, immunocytochemical and Western blot analysis. Low-dose irradiation with 1–100 cGy caused a dose-dependent inhibition of HL-60 cell proliferation, and induced apoptosis and differentiation to granulocytes with an increase in the number of CD15-positive cells. Pre-irradiation with 1–100 cGy for 24 h before treatment with RA promoted apoptosis but did not impair RA-induced differentiation. Both processes were associated with a decrease in the expression of the proliferating cell nuclear antigen (PCNA), BCL-2, c-MYC, and changes in both cytosolic and nuclear levels of protein tyrosine-phosphorylation as well as protein kinase C alpha or beta isoforms. These results demonstrate the beneficial role of low-dose irradiation in modulating leukemia cell proliferation, differentiation and apoptosis.

[1] Feinendegen L.E. Evidence for beneficial low level radiation effects and radiation hormesis, Br. J. Radiol., 2005, 78, 3–7 http://dx.doi.org/10.1259/bjr/6335307510.1259/bjr/63353075Search in Google Scholar

[2] Feinendegen L.E., Loken M.K., Booz J., Muehlensiepen H., Sondhaus C.A., Bond V.P. Cellular mechanisms of protection and repair induced by radiation exposure and their consequences for cell system responses, Stem Cells, 1995, 13, 7–20 Search in Google Scholar

[3] Feinendegen L.E. The role of adaptive responses following exposure to ionizing radiation, Hum. Exp. Toxicol., 1999, 18, 426–432 http://dx.doi.org/10.1191/09603279967884030910.1191/096032799678840309Search in Google Scholar

[4] Shadley J.D., Wiencke J.K. Induction of the adaptive response by X-rays is dependent on radiation intensity, Int. J. Radiat. Biol., 1989, 56, 107–118 http://dx.doi.org/10.1080/0955300891455123110.1080/09553008914551231Search in Google Scholar

[5] Wolff S. The adaptive response in radiobiology evolving insights and implications, Environ. Health Perspect., 1998, 106, 277–283 http://dx.doi.org/10.2307/343392710.2307/3433927Search in Google Scholar

[6] Park S.H., Lee Y., Jeong K., Yoo S.Y., Cho C.K., Lee Y.S. Different induction of adaptive response to ionizing radiation in normal and neoplastic cells, Cell. Biol. Toxicol., 1999, 15, 111–119 http://dx.doi.org/10.1023/A:100752553114510.1023/A:1007525531145Search in Google Scholar

[7] Suzuki K., Komada S., Watanabe M. Extremely low-dose ionizing radiation causes activation of mitogen-activated protein kinase pathway and enhances proliferation of normal human diploid cells, Cancer Res., 2001, 61, 5396–5401 Search in Google Scholar

[8] Kim J.H., Hyun S.J., Yoon M.Y., Ji Y.H., Cho C.K., Yoo S.Y. Pretreatment of low-dose radiation reduces radiation-induced apoptosis in mouse lymphoma (EL4) cells, Arch. Pharmacol. Res., 1997, 20, 212–217 http://dx.doi.org/10.1007/BF0297614710.1007/BF02976147Search in Google Scholar

[9] Chen Z., Sakai K. Enhancement of radiation-induced apoptosis by preirradiation with low-dose X-rays in human leukemia MOLT-4 cells, J. Radiat. Res., 2004, 45, 239–243 http://dx.doi.org/10.1269/jrr.45.23910.1269/jrr.45.239Search in Google Scholar

[10] Carter S., Auer K.L., Readon D.B., Birrel M., Fisher P.B., Valerie K., et al. Inhibition of the mitogen activated protein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells, Oncogene, 1998, 16, 2787–2796 http://dx.doi.org/10.1038/sj.onc.120180210.1038/sj.onc.1201802Search in Google Scholar

[11] Milne D.M., Campbell D.G., Caudwell F.B., Meek D.W. Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases, J. Biol. Chem., 1995, 269, 9253–9260 10.1016/S0021-9258(17)37101-6Search in Google Scholar

[12] Kasid U., Suy S., Dent P., Ray S., Whiteside T.M., Strugill T.W. Activation of Raf by ionizing radiation, Nature, 1996, 382, 813–816 http://dx.doi.org/10.1038/382813a010.1038/382813a0Search in Google Scholar PubMed

[13] Verheij M., Ruiter G.A., Zerp C.F., van Blitterswijk W.J., Fuks Z., Haimovtz-Friedman A., et al. The role of the stress-activated kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis, Radiother. Oncol., 1998, 17, 225–232 http://dx.doi.org/10.1016/S0167-8140(98)00007-310.1016/S0167-8140(98)00007-3Search in Google Scholar

[14] Prasad A.V., Mohan N., Chandrasekar B., Meltz M.L. Induction of transcription of “immediate early genes” by low-dose ionizing radiation, 1995, 143, 263–272 10.2307/3579212Search in Google Scholar

[15] Bishay K., Ory K., Labeau J., Levalois C., Olivier C., Chevillard S. DNA-damage-related gene expression as biomarkers to assess cellular response after gamma irradiation of human lymphoblastoid cell line, Oncogene, 2000, 19, 916–923 http://dx.doi.org/10.1038/sj.onc.120340510.1038/sj.onc.1203405Search in Google Scholar

[16] Loree J., Koturbash I, Kutanzi K., Baker M., Pogribny I., Kovalchuk O. Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis, Int. J. Radiat. Biol., 2006, 82, 805–815 http://dx.doi.org/10.1080/0955300060096002710.1080/09553000600960027Search in Google Scholar

[17] Suzuki K., Kodama S., Watanabe M. Low-dose radiation effects and intracellular signaling pathways, Yakugaku Zasshi, 2006, 126, 859–867 http://dx.doi.org/10.1248/yakushi.126.85910.1248/yakushi.126.859Search in Google Scholar

[18] Amundson S.A., Lee R.A., Koch-Paiz C.A., Bittner M.L., Meltzer P., Trent J.M., et al. Differential responses of stress genes to low dose-rate gamma irradiation, Mol. Cancer Res., 2003, 1, 445–452 10.1093/milmed/167.suppl_1.13Search in Google Scholar

[19] Chen S.L., Cai L., Li X.K., Liu S.Z. Low-dose whole body irradiation induces alterations of protein expression in mouse thymocytes, Toxicol. Lett., 1999, 105, 141–152 http://dx.doi.org/10.1016/S0378-4274(98)00393-210.1016/S0378-4274(98)00393-2Search in Google Scholar

[20] Chen S.L., Cai L., Meng Q.Y., Xu S., Wan H., Liu S.Z. Low dose Whole-Body irradiation (LD-WBI) changes protein expression of mouse thymocytes: effect of a LD-WBI-enhanced protein RIP10 on cell proliferation and spontaneous or radiation-induced thymocyte apoptosis, Toxicol. Sci., 2000, 55, 97–106 http://dx.doi.org/10.1093/toxsci/55.1.9710.1093/toxsci/55.1.97Search in Google Scholar

[21] Stulik J., Koupilova K., Hernychova L., Macela A., Blacha V., Baaske C., et al. Modulation of signal transduction pathways and global protein composition of macrophages by ionizing radiation, Electrophoresis, 1999, 20, 962–968 http://dx.doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<962::AID-ELPS962>3.0.CO;2-610.1002/(SICI)1522-2683(19990101)20:4/5<962::AID-ELPS962>3.0.CO;2-6Search in Google Scholar

[22] Kastner P., Chan S. Function of RARα during the maturation of neutrophils, Oncogene, 2001, 20, 7178–7185 http://dx.doi.org/10.1038/sj.onc.120475710.1038/sj.onc.1204757Search in Google Scholar

[23] Collins S. The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation and cellular oncogene expression, Blood, 1987, 70, 123–144 10.1182/blood.V70.5.1233.bloodjournal7051233Search in Google Scholar

[24] Drexler H.G., Quentmeir H., Mac Leod R.A., Uphoff C.C., Hu Z.B. Leukemia cell lines: in vitro models for the study of acute promyelocytic leukemia, Leukem. Res., 1995, 19, 681–691 http://dx.doi.org/10.1016/0145-2126(95)00036-N10.1016/0145-2126(95)00036-NSearch in Google Scholar

[25] Slack J.I., Rusiniak M.A. Current issues in the management of acute promyelocytic leukemia, Ann. Hematol., 2000, 79, 227–238 http://dx.doi.org/10.1007/s00277005058510.1007/s002770050585Search in Google Scholar

[26] Martin S.J., Bradley J.G., Cotter T.G. HL-60 cells induced to differentiate towards neutrophils subsequently die via apoptosis, Clin. Exp. Immunol., 1990, 79, 448–453 http://dx.doi.org/10.1111/j.1365-2249.1990.tb08110.x10.1111/j.1365-2249.1990.tb08110.xSearch in Google Scholar

[27] Collins S.J., Ruscetti F.W., Galagher R.E., Gallo R.C. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide, J. Exp. Med., 1979, 49, 969–974 http://dx.doi.org/10.1084/jem.149.4.96910.1084/jem.149.4.969Search in Google Scholar

[28] Mercille S., Massie B. Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells, Biotechnol. Bioingeneer., 1994, 44, 1140–1154 http://dx.doi.org/10.1002/bit.26044091610.1002/bit.260440916Search in Google Scholar

[29] Watson R.W., Rotstein O.D., Parodo J., Bitar R., Hackam D., Marshall J.C. Granulocytic differentiation of HL-60 cells results in spontaneous apoptosis mediated by increase caspase expression, FEBS Lett., 1997, 412, 603–609 http://dx.doi.org/10.1016/S0014-5793(97)00779-510.1016/S0014-5793(97)00779-5Search in Google Scholar

[30] Kuerbitz S.J., Plunkett B.S., Walsh W.V., Kastan M.B. Wilde-type p53 is a cell cycle checkpoint determinant following irradiation, Proc. Natl. Acad. Sci. USA, 1992, 89, 7491–7495 http://dx.doi.org/10.1073/pnas.89.16.749110.1073/pnas.89.16.7491Search in Google Scholar

[31] Livingstone L.R., White A., Sprouse J., Livanos E., Jacks T., Tisty T.D. Altered cell cycle arrest and gene amplification potential accompany loss of wilde-type p53, Cell, 1992, 70, 923–935 http://dx.doi.org/10.1016/0092-8674(92)90243-610.1016/0092-8674(92)90243-6Search in Google Scholar

[32] O’Connor P.M., Jackman J., Jondle D., Bhatia K., Magrath I., Kohn K.W. Role of p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkit’s lymphoma cell lines, Cancer Res., 1993, 53, 4776–4780 Search in Google Scholar

[33] Han Z., Chatterjee D., He D.M., Early J., Pantazis P., Wyche J.H., et al. Evidence for a G2 checkpoint in p53-independent apoptosis induction by X-irradiation, Mol. Cell Biol., 1995, 15, 5849–5857 10.1128/MCB.15.11.5849Search in Google Scholar PubMed PubMed Central

[34] Nagy L., Thomazy V.A., Shipley G.L., Fesus L., Lamph W., Heyman R.A, et al. Activation of retinoid X receptors induces apoptosis in HL-60 cell line, Mol. Cell Biol., 1995, 15, 3540–3551 10.1128/MCB.15.7.3540Search in Google Scholar PubMed PubMed Central

[35] Ohashi M., Iwase W.M., Nagumo M. Changes in susceptibility to Fas-mediated apoptosis during differentiation of HL-60 cells, J. Leuk. Biol., 2000, 67, 374–380 10.1002/jlb.67.3.374Search in Google Scholar PubMed

[36] Salih H.R., Starling G.C., Brandl S. Differentiation of promyelocytic leukemia: alterations in Fas (CD95/Apo-1) and Fas Ligand (CD178) expression, Br. J. Haematol., 2002, 117, 76–85 http://dx.doi.org/10.1046/j.1365-2141.2002.03382.x10.1046/j.1365-2141.2002.03382.xSearch in Google Scholar PubMed

[37] Rezacova M., Vavrova J., Vokurkova D., Tichy A., Knizek J., Psutka J. The importance of abrogation of G2-phase arrest in combined effect of TRAIL and ionizing radiation, Acta Biochim. Pol., 2005, 52, 889–895 10.18388/abp.2005_3403Search in Google Scholar

[38] Di Pietro R., Secchiero P., Rana R., Gibellini D., Visani G., Bermis K., et al. Ionizing radiation sensitizes erythroleucemic cells but not normal erythroblasts to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by selective up-regulation of TRAIL-R1, Blood, 2001, 97, 2596–2603 http://dx.doi.org/10.1182/blood.V97.9.259610.1182/blood.V97.9.2596Search in Google Scholar

[39] Jonsson Z.O., Hubschner U. Proliferating cell nuclear antigen: more than a clamp for DNA polymerase, Bioassays, 1997, 19, 967–975 http://dx.doi.org/10.1002/bies.95019110610.1002/bies.950191106Search in Google Scholar PubMed

[40] Prosperi E. Multiple roles of the proliferating cell nuclear antigen: DNA replication, repair and cell cycle control, Progr. Cell Cycle Res., 1997, 3, 193–210 10.1007/978-1-4615-5371-7_15Search in Google Scholar PubMed

[41] Grzanka A., Skok Z., Janiak A., Grzanka D. The expression of proliferating cell nuclear antigen (PCNA) in leukemia cell lines HL-60 and K-562 at the light and electron microscope level, Neoplasma, 2000, 47, 288–293 Search in Google Scholar

[42] Sendler A., Kaffenberg W., Nuyken I., van Beuningen D. Proliferating kinetics and PCNA expression of HL-60 cells following ionizing irradiation and granulocytic differentiation, Cell Prolif., 1993, 6, 531–543 http://dx.doi.org/10.1111/j.1365-2184.1993.tb00031.x10.1111/j.1365-2184.1993.tb00031.xSearch in Google Scholar PubMed

[43] Kobayashi M., Okamoto K., Namikawa T., Okabayashi T., Araki K. The changes of proliferating cell nuclear antigen and apoptosis of the MM46 mammary cancer cells of the mouse after single high-dose irradiation, Med. Mol. Morphol., 2005, 38, 181–188 http://dx.doi.org/10.1007/s00795-005-0291-610.1007/s00795-005-0291-6Search in Google Scholar PubMed

[44] Yang E., Korsmeyer S.J. Molecular thanatopsis: a discourse on the BCL2 family and cell death, Blood, 1996, 88, 386–401 10.1182/blood.V88.2.386.bloodjournal882386Search in Google Scholar

[45] Kroemer G. The proto-oncogene bcl-2 and its role in regulating apoptotic cell death, Nat. Med., 1997, 3, 617–620 http://dx.doi.org/10.1038/nm0697-61410.1038/nm0697-614Search in Google Scholar

[46] Maung Z.T., MacLean F.R., Reid M.M., Pearson A.D.J, Proctor S.J., Hamilton P.J., et al. The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia, Br. J. Haematol., 1994, 88, 105–109 http://dx.doi.org/10.1111/j.1365-2141.1994.tb04984.x10.1111/j.1365-2141.1994.tb04984.xSearch in Google Scholar

[47] Campos L., Rouault J.-P., Sabido O., Oriol P., Roubi N., Vasselon C., et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response in chemotherapy, Blood, 1993, 81, 3091–3096 10.1182/blood.V81.11.3091.3091Search in Google Scholar

[48] Andreef M., Jiang S., Zhang X., Konopleva M., Estrov Z., Snell V.E., et al. Expression of Bcl-2- related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid, Leukemia, 1999, 13, 1881–1892 http://dx.doi.org/10.1038/sj/leu/240157310.1038/sj/leu/2401573Search in Google Scholar

[49] Kumakura S., Ishikura H., Tsumura H., Nakashima A., Stato Y., Kobyashi S. Cell-cycle-independent down-regulation of BCL-2 protein expression in differentiating HL-60 cells, Leuk. Lymphoma, 2000, 36, 375–382 http://dx.doi.org/10.3109/1042819000914885910.3109/10428190009148859Search in Google Scholar

[50] Ahmed N., Laverick L., Sammons J., Baumforth K.R., Hassan H.T. Effect of all-trans retinoic acid on chemotherapy induced apoptosis and down-regulation of Bcl-2 in human myeloid leukaemia CD34 positive cells, Leuk. Res., 1999, 8, 741–749 http://dx.doi.org/10.1016/S0145-2126(99)00084-310.1016/S0145-2126(99)00084-3Search in Google Scholar

[51] Kariya S., Ogawa Y., Yoshida S., Yabuki M., Imajo Y., Utsumi K. X-irradiation enhances the expression of Bcl-2 in HL-60 cells: the resulting effects on apoptosis and radiosensitivity, Int. J. Mol. Med., 1999, 3, 145–152 10.3892/ijmm.3.2.145Search in Google Scholar

[52] Bradbury D.A., Zhu Y.M., Russe N.H. Bcl-2 expression in acute myeloblastic leukaemia: relationship with autonomous growth and CD34 antigen expression, Leuk. Lymphoma, 1997, 24, 221–228 10.3109/10428199709039010Search in Google Scholar

[53] Pelengaris S., Khan M., Evan G.I. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression, Cell, 2002, 109, 321–334 http://dx.doi.org/10.1016/S0092-8674(02)00738-910.1016/S0092-8674(02)00738-9Search in Google Scholar

[54] Henriksson M., Luscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation, Adv. Cancer Res., 1996, 68, 109–182 http://dx.doi.org/10.1016/S0065-230X(08)60353-X10.1016/S0065-230X(08)60353-XSearch in Google Scholar

[55] Kumakura S., Ishikura H., Tsumura H., Iwata H., Endo J., Kobyashi S. c-Myc and Bcl-2 protein expression during the induction of apoptosis and differentiation in TNF alpha-treated HL-60 cells, Leuk. Lymphoma, 1996, 23, 383–394 http://dx.doi.org/10.3109/1042819960905484310.3109/10428199609054843Search in Google Scholar

[56] Dimberg A., Bahram F., Karlberg I., Larsson L.-G., Nilsson K., Oberg F. Retinoic acid-induced cell cycle arrest of human myeloid cell lines is associated with sequential down-regulation of c-Myc and cyclin E and posttranscriptional upregulation of p27 Kip1, Blood, 2007, 99, 2199–2206 http://dx.doi.org/10.1182/blood.V99.6.219910.1182/blood.V99.6.2199Search in Google Scholar

[57] MacLean K.H., Keller U.B., Rodriquez-Galindo C., Nilsson J.A., Cleveland J.L. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL, Mol. Cell Biol., 2003, 23, 7256–7270 http://dx.doi.org/10.1128/MCB.23.20.7256-7270.200310.1128/MCB.23.20.7256-7270.2003Search in Google Scholar

[58] Enomoto A., Suzuki N., Kang Y., Hirano K., Matsumoto Y., Zhu J., et al. Decreased c-Myc expression and its involvement in X-ray-induced apoptotic cell death of human T-cell leukaemia cell line MOLT-4, Int. J. Radiat. Biol., 2003, 79, 589–600 http://dx.doi.org/10.1080/0955300031000159727310.1080/09553000310001597273Search in Google Scholar

[59] Uckun F.M., Tuel-Ahlgren L., Song C.W., Waddick K., Myers D.E., Kirihara T, et al. Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death, Proc. Natl. Acad. Sci. USA, 1992, 89, 9005–9009 http://dx.doi.org/10.1073/pnas.89.19.900510.1073/pnas.89.19.9005Search in Google Scholar

[60] Treigyte G., Navakauskiene R., Kulyte A., Gineitis A., Magnusson K.-E. Tyrosine phosphorylation of cytoplasmic proteins in proliferating, differentiating, apoptotic HL-60 cells and blood neutrophils, Cell. Mol. Life Sci., 2000, 57, 1997–2008 http://dx.doi.org/10.1007/PL0000068110.1007/PL00000681Search in Google Scholar

[61] Navakauskiene R., Treigyte G., Gineitis A., Magnusson K.-E. Identification of apoptotic tyrosine-phosphorylated proteins after etoposide or retinoic acid treatement, Proteomics, 2004, 4, 1029–1041 http://dx.doi.org/10.1002/pmic.20030067110.1002/pmic.200300671Search in Google Scholar

[62] Komada F., Nishikawa M., Uemura Y., Morita K., Hidaka H. Expression of three major protein kinase C isozymes in various types of human leukemic cells, Cancer Res., 1991, 51, 4271–4278 Search in Google Scholar

[63] Savickiene J., Gineitis A., Shanbhag V.P., Stigbrand T. Protein kinase inhibitors exert stage specific and inducer dependent effects on HL-60 cell differentiation, Anticancer Res., 1995, 15, 687–962 Search in Google Scholar

[64] Ruvolo P.P., Deng X., Carr B.K., May S. A functional role for mitochondrial protein kinase Cα in Bcl2 phosphorylation and suppression of apoptosis, J. Biol. Chem., 1998, 273, 25436–25442 http://dx.doi.org/10.1074/jbc.273.39.2543610.1074/jbc.273.39.25436Search in Google Scholar

[65] Wang H.G., Rapp U.R., Reed J.C. Bcl-2 targets the protein kinase Raf-1 to mitochondria, Cell, 1996, 87, 629–638 http://dx.doi.org/10.1016/S0092-8674(00)81383-510.1016/S0092-8674(00)81383-5Search in Google Scholar

[66] Gamard C.J., Blode G.C., Hannun Y.A., Obeid L.M. Specific role for protein kinase Cβ in cell differentiation, Cell Growth Differ., 1994, 5, 405–409 Search in Google Scholar

[67] Tonetti D., Henning-Chubb C., Yamanishi D., Huberman E. Protein kinase C-beta is required for macrophage differentiation of human HL-60 leukemia cells, J. Biol. Chem., 1994, 269, 23230–23235 10.1016/S0021-9258(17)31643-5Search in Google Scholar

[68] Laouar A., Glesne D., Huberman E. Involvement of protein kinase C-β and ceramide in tumor necrosis factor-α-induced but not Fas-induced apoptosis of human myeloid leukemia cells, J. Biol. Chem., 1999, 274, 23526–23534 http://dx.doi.org/10.1074/jbc.274.33.2352610.1074/jbc.274.33.23526Search in Google Scholar PubMed

Published Online: 2010-8-20
Published in Print: 2010-10-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-010-0085-2/html
Scroll to top button