Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 30, 2010

Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells

  • Eun-Jin Yang EMAIL logo , Jong-Gwan Kim , Ji-Young Kim , Seong Kim , Nam Lee and Chang-Gu Hyun
From the journal Open Life Sciences

Abstract

We examined the effects of chitosan oligosaccharides (COSs) with different molecular weights (COS-A, 10 kDa < MW < 20 kDa; COS-C, 1 kDa < MW < 3 kDa) on the lipopolysaccharide (LPS)-induced production of prostaglandin E2 and nitric oxide and on the expression of cyclooxygenase-2 and inducible nitric oxide synthase in RAW264.7 macrophages. COS-A (0.4%) and COS-C (0.2%) significantly inhibited PGE2 production in LPS-stimulated macrophages without cytotoxicity. The effect of COS-A and COS-C on COX-2 expression in activated macrophages was also investigated by immunoblotting. The inhibition of PGE2 by COS-A and COS-C can be attributed to the blocking of COX-2 protein expression. COS-A (0.4%) and COS-C (0.2%) also markedly inhibited the LPS-induced NO production of RAW 264.7 cells by 50.2% and 44.1%, respectively. The inhibition of NO by COSs was consistent with decreases in inducible nitric oxide synthase (iNOS) protein expression. To test the inhibitory effects of COS-A and COS-C on other cytokines, we also performed ELISA assays for IL-1β in LPS-stimulated RAW 264.7 macrophage cells, but only a dose-dependent decrease in the IL-1β production exerted by COS-A was observed. In order to test for irritation and the potential sensitization of COS-A and COS-C for use as cosmetic materials, human skin primary irritation tests were performed on 32 volunteers; no adverse reactions of COSs usage were observed. Based on these results, we suggest that COS-A and COS-C be considered possible anti-inflammatory candidates for topical application.

[1] Paños I., Acosta N., Heras A., New drug delivery systems based on chitosan, Curr. Drug Discov. Technol., 2008, 5, 333–341 http://dx.doi.org/10.2174/15701630878673352810.2174/157016308786733528Search in Google Scholar

[2] Hayes M., Carney B., Slater J., Brück W., Mining marine shellfish wastes for bioactive molecules: chitin and chitosan-Part B: applications, Biotechnol. J., 2008, 3, 878–889 http://dx.doi.org/10.1002/biot.20080002710.1002/biot.200800027Search in Google Scholar

[3] No H.K., Meyers S.P., Prinyawiwatkul W., Xu Z., Applications of chitosan for improvement of quality and shelf life of foods: a review, J. Food Sci., 2007, 72, R87–R100 http://dx.doi.org/10.1111/j.1750-3841.2007.00383.x10.1111/j.1750-3841.2007.00383.xSearch in Google Scholar

[4] Liu B., Liu W.S., Han B.Q., Sun Y.Y., Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats, World J. Gastroenterol., 2007, 13, 725–731 10.3748/wjg.v13.i5.725Search in Google Scholar

[5] Felt O., Buri P., Gurny R., Chitosan: a unique polysaccharide for drug delivery, Drug Dev. Ind. Pharm., 1998, 24, 979–993 http://dx.doi.org/10.3109/0363904980908994210.3109/03639049809089942Search in Google Scholar

[6] Mitchell J.A., Larkin S., Williams T.J., Cyclooxygenase 2: regulation and relevance in inflammation, Biochem. Pharmacol., 1995, 50, 1535–1542 http://dx.doi.org/10.1016/0006-2952(95)00212-X10.1016/0006-2952(95)00212-XSearch in Google Scholar

[7] Smith W.L., Garavito R.M., Dewitt D.L., Prostaglandin endoperoxide H synthases (cyclooxygenase)-1 and -2, J. Biol. Chem., 1996, 271, 33157–33160 http://dx.doi.org/10.1074/jbc.271.52.3315710.1074/jbc.271.52.33157Search in Google Scholar PubMed

[8] da Cunha E.F., Ramalho T.C., Josa D., Caetano M.S., de Souza T.C., Targeting inhibition of COX-2: a review of patents, 2002–2006, Recent Pat. Inflamm. Allergy Drug Discov., 2007, 1, 108–123 http://dx.doi.org/10.2174/18722130778097992810.2174/187221307780979928Search in Google Scholar PubMed

[9] Guilemany J.M., Roca-Ferrer J., Mullol J., Cyclooxygenases and the pathogenesis of chronic rhinosinusitis and nasal polyposis, Curr. Allergy Asthma Rep., 2008, 8, 219–226 http://dx.doi.org/10.1007/s11882-008-0037-310.1007/s11882-008-0037-3Search in Google Scholar PubMed

[10] Yang H., Chen C., Cyclooxygenase-2 in synaptic signaling, Curr. Pharm. Des., 14, 1443–1451 10.2174/138161208784480144Search in Google Scholar PubMed PubMed Central

[11] Yoon H.J., Moon M.E., Park H.S., Im S.Y., Kim Y.H., Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells, Biochem. Biophys. Res. Commun., 2007, 358, 954–959 http://dx.doi.org/10.1016/j.bbrc.2007.05.04210.1016/j.bbrc.2007.05.042Search in Google Scholar

[12] Kim J.Y., Kim K.N., Kim J.G., Kim S.C., Lee W.J., Hyun C.G., In vitro antimicrobial and antioxidant activities of chitosan oligosaccharides, J. Appl. Biol. Chem., 2009, 52, 84–87 http://dx.doi.org/10.3839/jabc.2009.01510.3839/jabc.2009.015Search in Google Scholar

[13] Gerlier D., Thomasser N., Use of MTT colorimetric assay to measure cell activation, J. Immunol. Methods, 1986, 94, 57–63 http://dx.doi.org/10.1016/0022-1759(86)90215-210.1016/0022-1759(86)90215-2Search in Google Scholar

[14] Liu Y., Understanding the biological activity of amyloid proteins in vitro: from inhibited cellular MTT reduction to altered cellular cholesterol homeostasis, Prog. Neuro-Psychopharmacol. Psychiat., 1999, 23, 377–395 http://dx.doi.org/10.1016/S0278-5846(99)00003-210.1016/S0278-5846(99)00003-2Search in Google Scholar

[15] Kim S.S., Song G., Oh T.H., Kim K.N., Yang E.J., Kim J.Y., et al., Antimicrobial effect of Lindera erythrocarpa essential oil against antibiotic-resistant skin pathogens, J. Pure Appl. Microbiol., 2009, 3, 429–434 Search in Google Scholar

[16] Yang E.J., Kim S.S., Oh T.H., Song G., Kim K.N., Kim J.Y., et al., Peucedanum Japonicum and Citrus unshiu essential oils inhibit the growth of antibiotic-resistant skin pathogens, Ann. Microbiol., 2009, 59, 623–628 http://dx.doi.org/10.1007/BF0317515510.1007/BF03175155Search in Google Scholar

[17] Bradford M.M., A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–254 http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar

[18] Yoon W.J., Ham Y.M., Yoo B.S., Moon J.Y., Koh J., Hyun C.G., Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin E2, and proinflammatory cytokines in RAW264.7 macrophages, J. Biosci. Bioeng., 2009, 107, 429–438 http://dx.doi.org/10.1016/j.jbiosc.2008.11.01810.1016/j.jbiosc.2008.11.018Search in Google Scholar PubMed

[19] Yoon W.J., Kim S.S., Oh T.H., Lee N.H., Hyun C.G., Cryptomeria japonica essential oil inhibits the growth of drug-resistant skin pathogens and LPS-induced nitric oxide and pro-inflammatory cytokine production, Pol. J. Microbiol., 2009, 58, 61–68 Search in Google Scholar

[20] Yoon W.J., Kim S.S., Oh T.H., Lee N.H., Hyun C.G., Abies koreana essential oil inhibits drug-resistant skin pathogen growth and LPS-induced inflammatory effects of murine macrophage, Lipids, 2009, 44, 471–476 http://dx.doi.org/10.1007/s11745-009-3297-310.1007/s11745-009-3297-3Search in Google Scholar PubMed

[21] Fernandes J.C., Tavaria F.K., Soares J.C., Ramos O.S., João Monteiro M., Pintado M.E., et al., Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems, Food Microbiol., 2008, 25, 922–928 http://dx.doi.org/10.1016/j.fm.2008.05.00310.1016/j.fm.2008.05.003Search in Google Scholar PubMed

[22] Seo S., King J.M., Prinyawiwatkul W., Simultaneous depolymerization and decolorization of chitosan by ozone treatment, J. Food Sci., 2007, 72, C522–C526 http://dx.doi.org/10.1111/j.1750-3841.2007.00563.x10.1111/j.1750-3841.2007.00563.xSearch in Google Scholar PubMed

[23] Lee H.W., Park Y.S., Jung J.S., Shin W.S., Chitosan oligosaccharides, dp 2–8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe, 2002, 8, 319–324 http://dx.doi.org/10.1016/S1075-9964(03)00030-110.1016/S1075-9964(03)00030-1Search in Google Scholar

[24] Shahidi F., Arachchi J.K.V., Jeon Y.J., Food applications of chitin and chitosans, Trend Food Sci. Technol., 1999, 10, 37–51 http://dx.doi.org/10.1016/S0924-2244(99)00017-510.1016/S0924-2244(99)00017-5Search in Google Scholar

[25] Jeon Y.J., Park P.J., Kim S.K., Antimicrobial effect of chitooligosaccharides produced by bioreactor, Carbohydr. Polymer, 2001, 44, 71–76 http://dx.doi.org/10.1016/S0144-8617(00)00200-910.1016/S0144-8617(00)00200-9Search in Google Scholar

[26] Liu X.F., Guan Y.L., Yang D.Z., Li Z., Yao K.D., Antibacterial action of chitosan and carboxymethylated chitosan, J. Appl. Polymer Sci., 2001, 79, 1324–1335 http://dx.doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-LSearch in Google Scholar

[27] Zheng L.Y., Zhu J.F., Study on antimicrobial activity of chitosan with different molecular weights, Carbohydr. Polymer, 2003, 54, 527–530 http://dx.doi.org/10.1016/j.carbpol.2003.07.00910.1016/j.carbpol.2003.07.009Search in Google Scholar

[28] Qin C., Li H., Xiao Q., Liu Y., Zhu J., Du Y., Water-solubility of chitosan and its antimicrobial activity, Carbohydr. Polymer, 2006, 63, 367–374 http://dx.doi.org/10.1016/j.carbpol.2005.09.02310.1016/j.carbpol.2005.09.023Search in Google Scholar

[29] Eaton P., Fernandes J.C., Pereira E., Pintado M.E., Xavier Malcata F., Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus, Ultramicroscopy, 2008, 108, 1128–1134 http://dx.doi.org/10.1016/j.ultramic.2008.04.01510.1016/j.ultramic.2008.04.015Search in Google Scholar

[30] Alemdaroğlu C., Değim Z., Celebi N., Zor.F, Oztürk S., Erdoğan D., An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor, Burns, 2006, 32, 319–327 http://dx.doi.org/10.1016/j.burns.2005.10.01510.1016/j.burns.2005.10.015Search in Google Scholar

[31] Matsunaga T., Yanagiguchi K., Yamada S., Ohara N., Ikeda T., Hayashi Y., Chitosan monomer promotes tissue regeneration on dental pulp wounds, J. Biomed. Mater. Res. A, 2006, 76, 711–720 10.1002/jbm.a.30588Search in Google Scholar

[32] Chen R.N., Wang G.M., Chen C.H., Ho H.O., Sheu M.T., Development of N,O-(carboxymethyl)chitosan/collagen matrixes as a wound dressing, Biomacromolecules, 2006, 7, 1058–1064 http://dx.doi.org/10.1021/bm050754b10.1021/bm050754bSearch in Google Scholar

[33] Hamilton V., Yuan Y., Rigney D.A., Puckett A.D., Ong J.L., Yang Y., et al., Characterization of chitosan films and effects on fibroblast cell attachment and proliferation, J. Mater. Sci. Mater. Med., 2006, 17, 1373–1381 http://dx.doi.org/10.1007/s10856-006-0613-910.1007/s10856-006-0613-9Search in Google Scholar PubMed

[34] Huang M., Berkland C., Controlled release of repifermin from polyelectrolyte complexes stimulates endothelial cell proliferation, J. Pharm. Sci., 2009. 98, 268–280 http://dx.doi.org/10.1002/jps.2141210.1002/jps.21412Search in Google Scholar PubMed PubMed Central

Published Online: 2010-1-30
Published in Print: 2010-2-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-009-0066-5/html
Scroll to top button