Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 12, 2008

Effects of right-unilateral 6-hydroxydopamine infusion-induced memory impairment and oxidative stress: relevance for Parkinson’s disease

  • Lucian Hritcu EMAIL logo , Alin Ciobica and Vlad Artenie
From the journal Open Life Sciences

Abstract

Male Wistar rats were subjected to right-unilateral 6-hydroxydopamine (6-OHDA) (2 μg/μl) lesions of the ventral tegmental area (VTA) or the substantia nigra (SN), or were sham-operated, and their ability to acquire the operant task was studied by means of Y-maze and shuttle-box tasks. Lesions of both the VTA and the SN resulted in an impairment of conditioned avoidance response and increase of crossing latency tested by means of shuttle-box task, suggesting significant effects of long-term memory. 6-OHDA significantly decreased spontaneous alternation in Y-maze task, suggesting effects on spatial memory, especially on short-term memory. In addition, 6-OHDA lesions of the VTA and the SN induced reductions in superoxide dismutase (SOD), glutathione peroxidase (GPX) activities and malondialdehyde (MDA) levels in the temporal lobe rather than in the frontal lobe homogenates. Our results provide further support for the toxic effects of 6-OHDA-induced memory impairment and oxidative stress with relevance for Parkinson’s disease.

[1] Kitayama T., Onitsuka Y., Song L., Morioka N., Morita K., Dohi T., Assessing an eating disorder induced by 6-OHDA and the possibility of nerve regeneration therapy by transplantation of neural progenitor cells in rats, Nihon Shinkei Seishin Yakurigaku Zasshi., 2007, 27, 109–116 Search in Google Scholar

[2] Fitzsimmons D.F., Moloney T.C., Dowd E., Further validation of the corridor task for assessing deficit and recovery in the hemi-Parkinsonian rat: restoration of bilateral food retrieval by dopamine receptor agonism, Behav. Brain Res., 2006, 169, 352–355 http://dx.doi.org/10.1016/j.bbr.2006.01.01310.1016/j.bbr.2006.01.013Search in Google Scholar

[3] Shimura T., Kamada Y., Yamamoto T., Ventral tegmental lesions reduce overconsumption of normally preferred taste fluid in rats, Behav. Brain Res., 2002, 134, 123–130 http://dx.doi.org/10.1016/S0166-4328(01)00461-210.1016/S0166-4328(01)00461-2Search in Google Scholar

[4] Hefco V., Yamada K., Hefco A., Hritcu L., Tiron A., Nabeshima T., Role of the mesotelencephalic dopamine system in learning and memory processes in the rat, Eur. J. Pharmacol., 2003, 475, 55–60 http://dx.doi.org/10.1016/S0014-2999(03)02115-010.1016/S0014-2999(03)02115-0Search in Google Scholar

[5] Senthilkumar K.S., Saravanan K.S., Chandra G., Sindhu K.M., Jayakrishnan A., Mohanakumar K.P., Unilateral implantation of dopamine-loaded biode gradable hydrogel in the striatum attenuates motor abnormalities in the 6-hydroxydopamine model of hemi-parkinsonism, Behav. Brain Res., 2007, 184, 11–18 http://dx.doi.org/10.1016/j.bbr.2007.06.02510.1016/j.bbr.2007.06.025Search in Google Scholar

[6] Pullman S.L., Watts R.L., Juncos J.L., Chase T.N., Sanes J.N., Dopaminergic effects on simple and choice reaction time performance in Parkinson’s disease, Neurology, 1988, 38, 249–254 10.1212/WNL.38.2.249Search in Google Scholar

[7] Miller R., Beninger R.J., On the interpretation of asymmetries of posture and locomotion produced with dopamine agonists in animals with unilateral depletion of striatal dopamine, Prog. Neurobiol., 1991, 36, 229–256 http://dx.doi.org/10.1016/0301-0082(91)90032-V10.1016/0301-0082(91)90032-VSearch in Google Scholar

[8] Vlamings R., Visser-Vandewalle V., Koopmans G., Joosten E.A., Kozan R., Kaplan S., et al., High frequency stimulation of the subthalamic nucleus improves speed of locomotion but impairs forelimb movement in Parkinsonian rats, Neuroscience, 2007, 148, 815–823 http://dx.doi.org/10.1016/j.neuroscience.2007.06.04310.1016/j.neuroscience.2007.06.043Search in Google Scholar PubMed

[9] Caballol N., Marti M.J., Tolosa E., Cognitive dysfunction and dementia in Parkinson disease, Mov. Disord., 2007, 17, S358–S366 http://dx.doi.org/10.1002/mds.2167710.1002/mds.21677Search in Google Scholar PubMed

[10] Jabourian M., Perez S., Ezan P., Glowinski J., Deniau J.M., Kemel M.L., Impact of 6-hydroxydopamine lesions and cocaine exposure on mu-opioid receptor expression and regulation of cholinergic transmission in the limbic-prefrontal territory of the rat dorsal striatum, Eur. J. Neurosci., 2007, 25, 1546–1556 http://dx.doi.org/10.1111/j.1460-9568.2007.05375.x10.1111/j.1460-9568.2007.05375.xSearch in Google Scholar PubMed

[11] van Oosten R.V., Verheij M.M., Cools A.R., Bilateral nigral 6-hydroxydopamine lesions increase the amount of extracellular dopamine in the nucleus accumbens, Exp. Neurol., 2005, 191, 24–32 http://dx.doi.org/10.1016/j.expneurol.2004.09.00410.1016/j.expneurol.2004.09.004Search in Google Scholar PubMed

[12] Jenner P., Olanow C.W., Oxidative stress and the pathogenesis of Parkinson’s disease, Neurology, 1996, 47, S161–S170 10.1212/WNL.47.6_Suppl_3.161SSearch in Google Scholar

[13] Lotharius J., Brundin P., Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein, Nat. Rev. Neurosci., 2002, 3, 932–942 http://dx.doi.org/10.1038/nrn98310.1038/nrn983Search in Google Scholar

[14] Jenner P., Oxidative stress in Parkinson’s disease, Ann. Neurol., 2003, 53, S26–S36 http://dx.doi.org/10.1002/ana.1048310.1002/ana.10483Search in Google Scholar

[15] Sachs C., Jonsson G., Mechanisms of action of 6-hydroxydopamine, Biochem. Pharmacol., 1975, 24, 1–8 http://dx.doi.org/10.1016/0006-2952(75)90304-410.1016/0006-2952(75)90304-4Search in Google Scholar

[16] Perumal A.S., Gopal V.B., Tordzro W.K., Cooper T.B., Cadet J.L., Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain, Brain Res. Bull., 1992, 29, 699–701 http://dx.doi.org/10.1016/0361-9230(92)90142-K10.1016/0361-9230(92)90142-KSearch in Google Scholar

[17] Kumar R., Agarwal A.K., Seth P.K., Free radical-generated neurotoxicity of 6-hydroxydopamine, J. Neurochem., 1995, 64, 1703–1707 http://dx.doi.org/10.1046/j.1471-4159.1995.64041703.x10.1046/j.1471-4159.1995.64041703.xSearch in Google Scholar

[18] Cleeter M.W., Cooper J.M., Schapira A.H., Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement, J. Neurochem., 1992, 58, 786–789 http://dx.doi.org/10.1111/j.1471-4159.1992.tb09789.x10.1111/j.1471-4159.1992.tb09789.xSearch in Google Scholar

[19] Hasegawa E., Takeshige K., Oishi T., Murai Y., Minakami S., 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles, Biochem. Biophys. Res. Commun., 1990, 170, 1049–1055 http://dx.doi.org/10.1016/0006-291X(90)90498-C10.1016/0006-291X(90)90498-CSearch in Google Scholar

[20] Saito Y., Nishio K., Ogawa Y., Kinumi T., Yoshida Y., Masuo Y., et al., Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: Involvement of hydrogen peroxide-dependent and-independent action, Free Radic. Biol. Med., 2007, 42, 675–685 http://dx.doi.org/10.1016/j.freeradbiomed.2006.12.00410.1016/j.freeradbiomed.2006.12.004Search in Google Scholar PubMed

[21] Paxinos G., Watson C., The rat brain in stereotaxic coordinates, Academic Press, New York, 2005 Search in Google Scholar

[22] Yamada K., Noda Y., Hasegawa T., Komori Y., Nikai T., Sugihara H., et al., The role of nitric oxide in dizocilpine-induced impairment of spontaneous alternation behavior in mice, J. Pharmacol. Exp. Ther., 1996, 276, 460–466 Search in Google Scholar

[23] Hritcu L., Clicinschi M., Nabeshima T., Brain serotonin depletion impairs short-term memory, but not long-term memory in rats, Physiol. Behav., 2007, 91, 652–657 http://dx.doi.org/10.1016/j.physbeh.2007.03.02810.1016/j.physbeh.2007.03.028Search in Google Scholar PubMed

[24] Thiel C.M., Muller C.P., Huston J.P., Schwarting R.K.W., Auditory noise can prevent increased extracellular acetylcholine levels in the hippocampus in response to aversive stimulation, Brain Res., 2000, 882, 112–119 http://dx.doi.org/10.1016/S0006-8993(00)02842-010.1016/S0006-8993(00)02842-0Search in Google Scholar

[25] Hudzik T.J., Howell A., Georger M., Cross A.J., Disruption of acquisition and performance of operant response-duration differentiation by unilateral nigrostriatal lesions, Behav. Brain Res., 2000, 114, 65–77 http://dx.doi.org/10.1016/S0166-4328(00)00216-310.1016/S0166-4328(00)00216-3Search in Google Scholar

[26] Blackburn J.R., Pfaus J.G., Phillips A.G., Dopamine functions in appetitive and defensive behaviors, Prog. Neurobiol., 1992, 39, 247–279 http://dx.doi.org/10.1016/0301-0082(92)90018-A10.1016/0301-0082(92)90018-ASearch in Google Scholar

[27] Koob G.F., Simon H., Herman J.P., Le Moal M., Neuroleptic-like disruption of the conditioned avoidance response requires destruction of both the mesolimbic and nigrostriatal dopamine systems, Brain Res., 1984, 303, 319–329 http://dx.doi.org/10.1016/0006-8993(84)91218-610.1016/0006-8993(84)91218-6Search in Google Scholar

[28] Ashford J., Jones B.J., The effects of intra-amygdaloid injections of 6-hydroxydopamine on avoidance responding in rats, Brit. J. Pharmacol., 1976, 56, 255–261 10.1111/j.1476-5381.1976.tb07636.xSearch in Google Scholar

[29] Nitta A., Furukawa Y., Hayashi K., Hiramatsu M., Kameyama T., Hasegawa T., et al., Denervation of dopaminergic neurons with 6-hydroxydopamine increases nerve growth factor content in rat brain, Neurosci. Lett., 1992, 144, 152–156 http://dx.doi.org/10.1016/0304-3940(92)90738-S10.1016/0304-3940(92)90738-SSearch in Google Scholar

[30] Glinka Y., Gassen M., Youdim M.B.H., Mechanism of 6-hydroxydopamine neurotoxicity, J. Neural Transm., 1997, 104, 55–66 10.1007/978-3-7091-6842-4_7Search in Google Scholar PubMed

Published Online: 2008-7-12
Published in Print: 2008-9-1

© 2008 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-008-0023-8/html
Scroll to top button