Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2007

Stem cell potential for type 1 diabetes therapy

  • Enrique Roche EMAIL logo , Miriam Ramírez , Carmen Ramírez-Castillejo , Guadalupe Gómez-Mauricio and Jesús Usón
From the journal Open Life Sciences

Abstract

Stem cells have been considered as a useful tool in Regenerative Medicine due to two main properties: high rate of self-renewal, and their potential to differentiate into all cell types present in the adult organism. Depending on their origin, these cells can be grouped into embryonic or adult stem cells. Embryonic stem cells are obtained from the inner cell mass of blastocyst, which appears during embryonic day 6 of human development. Adult stem cells are present within various tissues of the organism and are responsible for their turnover and repair. In this sense, these cells open new therapeutic possibilities to treat degenerative diseases such as type 1 diabetes. This pathology is caused by the autoimmune destruction of pancreatic β-cells, resulting in the lack of insulin production. Insulin injection, however, cannot mimic β-cell function, thus causing the development of important complications. The possibility of obtaining β-cell surrogates from either embryonic or adult stem cells to restore insulin secretion will be discussed in this review.

[1] H.M. Blau, T.R. Brazelton and J.M. Weimann: “The evolving concept of a stem cell: Entity or function?”, Cell, Vol. 105, (2001), pp. 829–841. Search in Google Scholar

[2] J. Betschinger, K. Mechtler and J.A. Knoblich: “Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells”, Cell, Vol. 124, (2006), pp. 1241–1253. Search in Google Scholar

[3] R.P. Lanza, R. Langer and J. Vacanti: Principles of tissue engineering, 2nd ed., Academic Press, San Diego, 2000. Search in Google Scholar

[4] J.B. Gurdon, J.A. Byrne and S. Simonsson: “Nuclear reprogramming and stem cell creation”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 11819–11822. Search in Google Scholar

[5] K. Hochedlinger and R. Jaenisch: “Nuclear transplantation, embryonic stem cells, and the potential for cell therapy”, New Engl. J. Med., Vol. 349, (2003), pp. 275–286. Search in Google Scholar

[6] M.J. Munsie, A.E. Michalska, C.M. O’Brien, A.O. Trounson, M.F. Pera and P.S. Mountford: “Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei”, Curr. Biol., Vol. 10, (2000), pp. 989–992. Search in Google Scholar

[7] T. Wakayama, V. Tabar, I. Rodriguez, A.C.F. Perry, L. Studer and P. Mombaerts: “Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer”, Science, Vol. 292, (2001), pp. 740–743. Search in Google Scholar

[8] I. Wilmut, N. Beaujean, P.A. de Sousa, A. Dinnyes, T.J. King, L.A. Paterson, D. N. Wells and L.E. Young: “Somatic cell nuclear transfer”, Nature, Vol. 419, (2002), pp. 583–586. Search in Google Scholar

[9] J.B. Cibelli, K.A. Grant, K.B. Chapman, K. Cunniff, T. Worst, H.L. Green, S. J. Walker, P.H. Gutin, L. Vilner, V. Tabar, T. Dominko, J. Kane, P.J. Wettstein, R.P. Lanza, L. Studer, K. E. Vrana and M.D. West: “Parthenogenetic stem cells in nonhuman primates”, Science, Vol. 295, (2002), pp. 819. Search in Google Scholar

[10] A. Trounson: “The genesis of embryonic stem cells. Does parthenogenesis offer a more promising means of developing immune-matched ES cells?”, Nat. Biotechnol., Vol. 20, (2002), pp. 237–238. Search in Google Scholar

[11] J. Pomerantz and H.M. Blau: “Nuclear reprogramming: A key to stem cell function in regenerative medicine”, Nat. Cell Biol., Vol. 9, (2004), pp. 810–816. Search in Google Scholar

[12] P.S. Western and M.A. Surani: “Nuclear reprogramming-alchemy or analysis?”, Nat. Biotechnol., Vol. 20, (2002), pp. 445–446. Search in Google Scholar

[13] J.S. Odorico, D.S. Kaufman and J.A. Thomson: “Multilineage differentiation from human embryonic stem cell lines”, Stem Cells, Vol. 19, (2001), pp. 193–204. Search in Google Scholar

[14] A.G. Smith: “Embryo-derived stem cells: Of mice and men”, Annu. Rev. Cell. Develop. Biol., Vol. 17, (2001), pp. 435–462. Search in Google Scholar

[15] R.A. DeFronzo, E. Ferrannini, H. Keen and P. Zimmet: International textbook of diabetes mellitus, John Wiley and Sons, Chichester, UK, 2004. 10.1002/0470862092Search in Google Scholar

[16] N. Wierup, S. Yang, R.J. McEvilly, H. Mulder and F. Sundler: “Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1(832/13) cells”, J. Histochem. Cytochem., Vol. 52, (2004), pp. 301–310. Search in Google Scholar

[17] R.S. Heller, M. Jenny, P. Collombat, A. Mansouri, C. Tomasetto, O.D. Madsen, G. Mellitzer, G. Gradwohl and P. Serup: “Genetic determinants of pancreatic epsiloncell development”, Dev. Biol., Vol. 286, (2005), pp. 217–224. Search in Google Scholar

[18] M.S. Rao and J.K. Reddy: “Pancreatic stem cells: differentiation options”, Stem Cell Rev., Vol. 1, (2005), pp. 265–272. Search in Google Scholar

[19] M. Brownlee: “Biochemistry and molecular cell biology of diabetic complications”, Nature, Vol. 414, (2001), pp. 813–820. Search in Google Scholar

[20] C. Benoist and D. Mathis: “Cell death mediators in autoimmune diabetes-No shortage of suspects”, Cell, Vol. 89, (1997), pp. 1–3. Search in Google Scholar

[21] D. Mathis, L. Vence and C. Benoist: “β-Cell death during progression to diabetes”, Nature, Vol. 414, (2001), pp 792–798. Search in Google Scholar

[22] E. Roche, J.A. Reig, A. Campos, B. Paredes, J.R. Isaac, S. Lim, R.Y. Calne and B. Soria: “Insulin-secreting cells derived from stem cells: Clinical perspectives, hypes and hopes”, Transpl. Immunol., Vol. 15, (2005), pp. 113–129. Search in Google Scholar

[23] P. Zimmet, K.G.M.M. Alberti and J. Shaw: “Global and societal implications of the diabetes epidemic”, Nature, Vol. 414, (2001), pp. 782–787. Search in Google Scholar

[24] A.M.J. Shapiro, J.R.T. Lakey, E.A. Ryan, G.S. Korbutt, E. Toth, G.L. Warnock, N.M. Kneteman and R.V. Rajotte: “Islet transplantation in seven patients with type 1 diabetes mellitus using a corticoid-free immunosuppressive regime”, New Engl. J. Med., Vol. 343, (2000), pp. 230–238. Search in Google Scholar

[25] B. Keymeulen, P. Gillard, C. Mathieu, B. Movahedi, G. Maleux, G. delvaux, D. Ysebaert, B. roep, E. Vandemeulebroucke, M. Marichal, P. In’t Veld, M. Bogdani, C. Hendrieckx, F. Gorus, Z. Ling, J. van Rood and D. Pipeleers: “Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft”, Proc. Natl. Acad. Sci. USA, Vol. 103, (2006), pp. 17444–17449. Search in Google Scholar

[26] A. Borjesson and C. Carlsson: “Altered proinsulin conversion in rat pancreatic islets exposed long-term to various glucose concentrations of interleukin-1β”, J. Endocrinol., Vol. 192, (2007), pp. 381–387. Search in Google Scholar

[27] E.A. Ryan, B.W. Paty, P.A. Senor, D. Bigam, E. Alfadhli, N.M. Kneteman, J.R. Lakey and A.M. Shapiro: “Five-year follow-up alter clinical islet transplantation”, Diabetes, Vol. 54, (2005), pp. 2060–2069. Search in Google Scholar

[28] O. Korsgren, B. Nilsson, C. Berne, M. Felldin, A. Foss, R. Kallen, T. Lundgren, K. Salmela, A. Tibell and G. Tufveson: “Current status of clinical islet transplantation”, Transplantation, Vol. 79, (2005), 1289–1293. Search in Google Scholar

[29] E. Fuchs, T. Tumbar and G. Guasch: “Socializing with the neighbors: Stem cells and their niche”, Cell, Vol. 116, (2000), pp. 769–778. Search in Google Scholar

[30] R. Ensenat-Waser, A. Santana, N. Vicente-Salar, J.C. Cigudosa, E. Roche, B. Soria and J.A. Reig: “Isolation and characterization of residual undifferentiated mouse embryonic stem cells from embryoid body cultures by fluorescence tracking”, In Vitro Cell. Dev. Biol.-Animal, Vol. 42, (2006), pp. 115–123. Search in Google Scholar

[31] C. Holden and G. Vogel: “Cell biology. A technical fix for an ethical bind?”, Science, Vol. 306, (2004), 2174–2176. Search in Google Scholar

[32] J.T. Do and H.R. Schöler: “Nuclei of embryonic stem cells reprogram somatic cells”, Stem Cells, Vol. 22, (2004), pp. 941–949. Search in Google Scholar

[33] A. J. Wagers and I.L. Weissman: “Plasticity of adult stem cells”, Cell, Vol. 116, (2004), pp. 639–648. Search in Google Scholar

[34] C.S. Potten and M. Loeffler: “Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt”, Development, Vol. 110, (1990), pp. 1001–1020. Search in Google Scholar

[35] S. Bonner-Weir, M. Taneja, G.C. Weir, K. Tatarkiewicz, K.-H. Song, A. Sharma and J.J. O’Neil: “In vitro cultivation of human islets from expanded ductal tissue”, Proc. Natl. Acad. Sci. USA, Vol. 97, (2000), pp. 7999–8004. Search in Google Scholar

[36] V.K. Ramiya, M. Maraist, K.E. Arfors, D.A. Schatz, A.B. Peck and J.G. Cornelius: “Reversal of insulin-dependent diabtes using islets generated in vitro from pancreatic stem cells”, Nat. Med., Vol. 6, (2000), pp. 278–282. Search in Google Scholar

[37] H. Zulewski, E.J. Abraham, M.J. Gerlach, P.B. Daniel, W. Moritzs, B. Müller, M. Vallejo, M.K. Thomas and J.F. Habener: “Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine and hepatic phenotypes”, Diabetes, Vol. 50, (2001), pp. 521–533. Search in Google Scholar

[38] L. Selander and H. Edlund: “Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas”, Mech. Dev., Vol. 113, (2002), pp. 189–192. Search in Google Scholar

[39] H. Huang and X. Tang: “Phenotypic determination and characterization of nestinpositive precursors derived from human fetal pancreas”, Lab. Invest., Vol. 83, (2003), pp. 539–547. Search in Google Scholar

[40] R.M. Seaberg, S.R. Smukler, T.J. Kieffer, G. Enikolopov, Z. Asghar, M.B. Wheeler, G. Korbutt and D. van der Kooy: “Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages”, Nat. Biotechnol., Vol. 22, (2004), pp. 1115–1124. Search in Google Scholar

[41] Y.H. Chou, S. Khuon, H. Hermann and R.D. Goldman: “Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis”, Mol. Biol. Cell, Vol. 14, (2003), pp. 1468–1478. Search in Google Scholar

[42] F. Esni, D.A. Stoffers, T. Takeuchi and S.D. Leach: “Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas”, Mech. Dev., Vol. 121, (2004), pp. 15–25. Search in Google Scholar

[43] T. Klein, Z. Ling, H. Heimberg, O.D. Madsen, R.S. Heller and P. Serup: “Nestin is expressed in vascular endothelial cells in the adult human pancreas”, J. Histochem. Cytochem., Vol. 51, (2003), pp. 697–706. Search in Google Scholar

[44] J. Lardon, I. Rooman and L. Bouwens: “Nestin expression in pancreatic stellate cells and angiogenic endothelial cells”, Histochem. Cell. Biol., Vol. 117, (2002), pp. 535–540. Search in Google Scholar

[45] M.C. Gershengorn, A.A. Hardikar, A. Hardikar, C. Wei, E. Geras-Raaka, B. Marcus-Samuels and B.M. Raaka: “Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells”, Science, Vol. 306, (2004), pp. 2261–2264. Search in Google Scholar

[46] U. Ahlgren, S.L. Plaff, T.M. Jessell, T. Edlund and H. Edlund: “Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells”, Nature, Vol. 385, (1997), pp. 257–260. Search in Google Scholar

[47] F. Atouf, C.H. Park, K. Pechhold, M. Ta, Y. Choi and N.L. Lumeelsky: “No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro”, Diabetes, Vol. 56, (2007), pp. 699–702. Search in Google Scholar

[48] L.G. Chase, F. Ulloa-Montoya, B.L. Kidder and C.M. Verfaille: “Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells”, Diabetes, Vol. 56, (2007), pp. 3–7. Search in Google Scholar

[49] M. Eberhardt, P. Salmon, M.A. von Mach, J.G. Hengstler, M. Brulport, P. Linscheid, D. Seboek, J. Oberholzer, A. Barbero, I. martin, B. Müller, D. Trono and H. Zulewski: “Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets”, Biochem. Biophys. Res. Commun., Vol. 345, (2006), pp. 1167–1176. Search in Google Scholar

[50] N. Weinberg, L. Ouziel-Yahalom, S. Knoller, S. Efrat and Y. Dor: “Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic betacells”, Diabetes, Vol. 56, (2007), pp. 1299–1304. Search in Google Scholar

[51] K.L. Seeberger, J.M Dufour, A.M. Shapiro, J.R. Lakey, R.V. Rajotte, G. S. Korbutt: “Expansion of mesenchymal stem cells from human pancreatic ductal epithelium”, Lab. Invest., Vol. 86, (2006), pp. 141–153. Search in Google Scholar

[52] K. Minami, M. Okuno, K. Miyawaki, A. Okumachi, K. Ishizaki, K. Oyama, M. Kawaguchi, N. Ishizuka, T. Iwanaga and S. Seino: “Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells”, Proc. Natl. Acad. Sci. USA, Vol. 102, (2005), pp. 15116–15121. Search in Google Scholar

[53] B.M. Desai, J. Oliver-Krasinski, D.D. De Leon, C. Fazard, N. Hong, S.D. Leach and D.A. Stoffers: “Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell regeneration”, J. Clin. Invest., Vol 117, (2007), pp. 971–977. Search in Google Scholar

[54] Y. Dor, J. Brown, O.I. Martínez and D.A. Melton: “Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation”, Nature, Vol. 429, (2004), pp. 41–46. Search in Google Scholar

[55] P. Serup: “Embryonic stem cell-based diabetes therapy-a long road to travel”, Diabetologia, Vol. 49, (2006), pp. 2537–2540. Search in Google Scholar

[56] M. Banerjee, M. Kanitkar and R.R. Bhonde: “Approaches towards endogenous pancreatic regeneration”, Rev. Diabet. Stud., Vol. 2, (2005), pp. 165–176. Search in Google Scholar

[57] S. Kodama, W. Kuhtreiber, S. Fujimura, E.A. Dale and D.L. Faustman: “Islet regeneration during the reversal of autoimmune diabetes in NOD mice”, Science, Vol. 302, (2003), pp. 1223–1227. Search in Google Scholar

[58] Z. Yang, M. Chen, J.D. Carter, C.S. Nunemaker, J.C. Garmey, S.D. Kimble and J.L. Nadler: “Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes”, Biochem. Biophys. Res. Commun., Vol. 344, (2006), pp. 1017–1022. http://dx.doi.org/10.1016/j.bbrc.2006.03.17710.1016/j.bbrc.2006.03.177Search in Google Scholar PubMed

[59] Y. Jiang, B.N. Jahagirdar, R.L. Reinhardt, R.E. Schwartz, C.D. Keene, X.R. Ortiz-González, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W.C. Lew, D.A. Largaespada and C.M. Verfaillie: “Pluripotency of mesenchymal stem cells derived from adult marrow”, Nature, Vol. 418, (2002), pp. 41–49. Search in Google Scholar

[60] A. Ianus, G.G. Holz, N.D. Theise and M.A. Hussain: “In vivo derivation of glucosecompetent pancreatic endocrine cells from bone marrow without evidence of cell fusion”, J. Clin. Invest., Vol. 111, (2003), pp. 843–850. Search in Google Scholar

[61] G. D’Ippolito, S. Diabira, G.A. Howard, P. Menei, B.A. Roos and P.C. Schiller: “Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential”, J. Cell. Sci., Vol. 117, (2004), pp. 2971–2981. Search in Google Scholar

[62] T. Tayaramma, B. Ma, M. Rohde and H. Mayer: “Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells”, Stem Cells, Vol. 24, (2006), pp. 2858–2867. Search in Google Scholar

[63] C. Moriscot, F. De Fraipont, M.-J. Richard, M. Marchand, P. Svatier, D. Bosco, M. Favrot and P.-Y. Benhamou: “Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro”, Stem Cells, Vol. 23, (2005), pp. 594–604. Search in Google Scholar

[64] J.B. Choi, H. Uchino, K. Azuma, N. Iwashita, Y. Tanaka, H. Mochizuki, M. Migita, T. Shimada, R. Kawamori and H. Watada: “Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells”, Diabetologia, Vol. 46, (2003), pp. 1366–1374. Search in Google Scholar

[65] A. Lechner, Y.-Q. Yang, R.A. Blacken, L. Wang, A.L. Nolan and J.F. Habener: “No evidence for significant transdifferentiation of bone marrow into pancreatic β-cells in vivo”, Diabetes, Vol. 53, (2004), pp. 616–623. Search in Google Scholar

[66] D. Hess, L. Li, M. Martin, S. Sakano, D. Hill, B. Strutt, S. Thyssen, D.A. Gray and M. Bhatia: “Bone marrow-derived stem cells initiate pancreatic regeneration”, Nat. Biotechnol., Vol. 21, (2003), pp. 763–770. Search in Google Scholar

[67] S.K. Kim and M. Hebrok: “Intercellular signals regulating pancreas development and function”, Genes Develop., Vol. 15, (2001), pp. 11–127. Search in Google Scholar

[68] E. Lammert, O. Cleaver and D. Melton: “Induction of pancreatic differentiation by signals from blood vessels”, Science, Vol. 294, (2001), pp. 564–567. Search in Google Scholar

[69] K. Timper, D. Seboek, M. Eberhardt, P. Linscheid, M. Christ-Crain, U. Keller, B. Muller, H. Zulewski: “Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells”, Biochem. Biophys. Res. Commun., Vol. 341, (2006), pp. 1135–1140. Search in Google Scholar

[70] M. Ruhnke, H. Ungefroren, A. Nussler, F. Martin, M. Brulport, W. Schorman, J.G. Hengstler, W. Klapper, K. Ulrichs, J.A. Hutchinson, B. Soria, R.M. Parwaresch, P. Heeckt, B. Kremer, F. Fändrich: “Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells”, Gastroenterology, Vol. 128, (2005), pp. 1774–1786. Search in Google Scholar

[71] L. Yang, S. Li, H. Hatch, K. Ahrens, J.G. Cornelius, B.E. Petersen and A.B. Peck: “In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 8078–8083. Search in Google Scholar

[72] M.B. Herrera, S. Bruno, S. Buttiglieri, C. Tetta, S. Gatti, M.C. Deregibus, B. Bussolati and G. Camussi: “Isolation and characterization of a stem cell population from adult human liver”, Stem Cells, Vol. 24, (2006), pp. 2840–2850. Search in Google Scholar

[73] S. Efrat: “Prospects for gene therapy of insulin-dependent diabetes mellitus”, Diabetologia, Vol. 41, (1998), pp. 1401–1409. Search in Google Scholar

[74] S. Ferber, A. Halkin, H. Cohen, I. Ber, Y. Einav, I. Goldberg, I. Barshack, R. Seijffers, J. Kopolovic, N. Kaiser and A. Karasik: “Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia”, Nat. Med., Vol. 6, (2000), pp. 568–572. Search in Google Scholar

[75] H. Kojima, M. Fujimiya, K. Matsumura, P. Younan, H. Imaeda, M. Maeda and L. Chan: “NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice”, Nat. Med., Vol. 9, (2003), pp. 596–603. Search in Google Scholar

[76] M. Zalzman, S. Gupta, R.K. Giri, I. Berkovich, B.S. Sappal, O. Karnieli, M.A. Zern, N. Fleischer and S. Efrat: “Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 7253–7258. Search in Google Scholar

[77] H. Kojima, T. Nakamura, Y. Fujita, A. Kishi, M. Fujimiya, S. Yamada, M. Kudo, Y. Nishio, H. Maegawa, M. Haneda, H. Yasuda, I. Kojima, M. Seno, N.C. Wong, R. Kikkawa and A. Kashiwagi: “Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin”, Diabetes, Vol. 51, (2002), pp. 1398–1408. Search in Google Scholar

[78] E. Roche, M.P. Sepulcre, J.A. Reig, A. Santana and B. Soria: “Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells”, FASEB J., Vol. 19, (2005), pp. 1341–1343. Search in Google Scholar

[79] S. Ferron, H. Mira, S. Franco, M. Caro-Jaimez, E. Bellmunt, C. Ramirez, I. Farinas and M.A. Blasco: “Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells”, Development, Vol. 131, (2004), pp. 4059–4070. Search in Google Scholar

[80] A.G. Smith: “Culture and differentiation of embryonic stem cells”, J. Tissue Cult. Meth., Vol. 13, (1991), pp. 89–94. Search in Google Scholar

[81] E. Roche, M.P. Sepulcre, R. Ensenat-Waser, I. Maestre, J.A. Reig and B. Soria: “Bioengineering insulin-secreting cells from embryonic stem cells: a review of progress”, Med. Biol. Engineer. Comp., Vol. 41, (2003), pp. 384–391. Search in Google Scholar

[82] B. Soria, A. Skoudy and F. Martín: “From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus”, Diabetologia, Vol. 44, (2001), pp. 407–415. Search in Google Scholar

[83] A. Shiroi, M. Yoshikawa, H. Yokota, H. Fukui, S. Ishizaka, K. Tatsumi and Y. Takahashi: “Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone”, Stem Cells, Vol. 20, (2002), pp. 284–292. Search in Google Scholar

[84] P. Vaca, F. Martin, J.M. Vegara-Meseguer, J.M. Rovira, G. Berna and B. Soria: “Induction of differentiation of embryonic stem cells into insulin secreting cells by fetal soluble factors”, Stem Cells, Vol. 24, (2006), pp. 258–265. Search in Google Scholar

[85] S. Assady, G. Maor, M. Amit, J. Itskovitz-Eldor, K.L. Skorecki and M. Tzukerman: “Insulin production by human embryonic stem cells”, Diabetes, Vol. 50, (2001), pp. 1691–1697. Search in Google Scholar

[86] P. Blyszczuk, J. Czyz, G. Kania, M. Wagner, U. Roll, L. St-Onge, L and A. Wobus: “Expression of Pax4 in embryonic stem cells promotes differentiation of nestinpositive progenitor and insulin-producing cells”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 998–1003. Search in Google Scholar

[87] N. Lumelsky, O. Blondel, P. Laeng, I. Velasco, R. Ravin and R. McKay: “Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets”, Science, Vol. 292, (2001), pp. 1389–1394. Search in Google Scholar

[88] S. Alpert, D. Hanahan and G. Teitelman: “Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons”, Cell, Vol. 53, (1998), pp. 295–308. Search in Google Scholar

[89] C. Vicario-Abejón, M.J. Yusta-Boyo, C. Fernández-Moreno and F. de Pablo: “Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia”, J. Neurosci., Vol. 23, (2003), pp. 895–906. Search in Google Scholar

[90] C. Hernandez-Sanchez, A. Mansilla, E.J. de la Rosa, F. de Pablo: “Proinsulin in development: New roles for an ancient prohormone”, Diabetologia, Vol. 49, (2006), pp. 1142–1150. Search in Google Scholar

[91] D. Melloul, S. Marshak and E. Cerasi: “Regulation of insulin gene transcription”, Diabetologia, Vol. 45, (2002), pp. 309–326. Search in Google Scholar

[92] C. Hernández-Sánchez, A. Mansilla, E.J. de la Rosa, G.E. Pollerberg, E. Martínez-Salas and F. de Pablo: “Upstream AUGs in embryonic proinsulin mRNA control its low translation level”, EMBO J., Vol. 22, (2003), pp. 5582–5592. Search in Google Scholar

[93] K.A. D’Amour, A.D. Agulnick, S. Eliazer, O.G. Kelly, E. Kroon, E.E. Baetge: “Efficient differentiation of human embryonic stem cells to definitive endoderm”, Nat. Biotechnol., Vol. 23, (2005), pp. 1534–1541. Search in Google Scholar

[94] S. Tada, T. Era, C. Furusawa, H. Sakurai, S. Nishikawa, M. Kinoshita, K. Nakao, T. Chiba and S.-I. Nishikawa: “Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture”, Development, Vol. 132, (2005), pp. 4363–4374. Search in Google Scholar

[95] K.A. D’Amour, A.G. Bang, S. Eliazer, O.G. Kelly, A.D. Agulnick, N.G. Smart, M.A. Moorman, E. Kroon, M.K. Carpenter and E.E. Baetge: “Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells”, Nat. Biotechnol., Vol. 24, (2006), pp. 1392–1401. Search in Google Scholar

[96] B. Soria, E. Roche, G. Berna, T. León-Quinto, J.A. Reig and F. Martín: “Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice”, Diabetes, Vol. 49, (2000), pp. 157–162. Search in Google Scholar

[97] M.G. Klug, M.H. Soonpa, G.Y. Koh and L.J. Field: “Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts”, J. Clin. Invest., Vol. 98, (1996), pp. 216–224. Search in Google Scholar

[98] M. Li, L. Pevny, R. Lovell-Badge and A. Smith: “Generation of purified neural precursors from embryonic stem cells by lineage selection”, Curr. Biol., Vol. 8, (1998), pp. 971–974. Search in Google Scholar

[99] M. Müller, B.K. Fleischmann, S. Selbert, G.J. JI, E. Endl, G. Middeler, O.J. Müller, P. Schlenke, S. Frese, A.M. Wobus, J. Hescheler, H.A. Katus and W.M. Franz: “Selection of ventricular-like cardiomyocytes from ES cells in vitro”, FASEB J., Vol. 14, (2000), pp. 2540–2548. Search in Google Scholar

[100] T. León-Quinto, J. Jones, A. Skoudy, M. Burcin and B. Soria: “In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells”, Diabetologia, Vol. 47, (2004), pp. 1442–1451. Search in Google Scholar

[101] S.K. Chakrabarti and R.G. Mirmira: “Transcription factors direct the development and function of pancreatic β cells”, Trends Endocrinol. Metab., Vol. 14, (2003), pp. 78–84. Search in Google Scholar

[102] A. Pattyn, A. Vallstedt, J.M. Dias, M. Sander and J. Ericson: “Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneurons identity in the hindbrain”, Development, Vol. 130, (2003), pp. 4149–4159. Search in Google Scholar

[103] A. Kubo, K. Shinozaki, J.M. Shannon, V. Kouskoff, M. Kennedy, S. Woo, H.J. Fehling and G. Keller: “Development of definitive endoderm from embryonic stem cells in culture”, Development, Vol. 131, (2004), pp. 1651–1662. Search in Google Scholar

[104] M. Yasunaga, S. Tada, S. Torikai-Nishikawa, Y. Nakano, M. Okada, L.M. Jakt, S. Nishikawa, T. Chiba, T. Era and S.-I. Nishikawa: “Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells”, Nat. Biotechnol., Vol. 23, (2005), pp. 1542–1550. Search in Google Scholar

[105] G.K.C. Brolén, N. Heins, J. Edsbagge and H. Semb: “Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulinproducing β-cell-like cells”, Diabetes, Vol. 54, (2005), pp. 2867–2874. Search in Google Scholar

[106] T. Otonkoski, G.M. Beattie, M.I. Mally, C. Ricordi and A. Hayek: “Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells”, J. Clin. Invest., Vol. 92, (1993), pp. 1459–1466. http://dx.doi.org/10.1172/JCI11672310.1172/JCI116723Search in Google Scholar PubMed PubMed Central

[107] I. Bai, G. Meredith and B.E. Tuch: “Glucagon-like peptide enhances production of insulin in insulin-producing cells derived from mouse embryonic stem cells”, J. Endocrinol., Vol. 186, (2005), pp. 343–352. Search in Google Scholar

[108] Y. Hori, I.C. Rulifson, B.C. Tsai, J.J. Heit, J.D. Cahoy and S.K. Kim: “Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 16105–16110. Search in Google Scholar

[109] H. Noguchi, S. Bonner-Weir, F.Y. Wei, M. Matsushita and S. Matsumoto: “BETA2/NeuroD protein can transduced into cells due to an arginine-and lysisnerich sequence”, Diabetes, Vol. 54, (2005), pp. 2859–2866. Search in Google Scholar

[110] Y. Moritoh, E. Yamato, Y. Yasui, S. Miyazaki and J. Miyazaki: “Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells”, Diabetes, Vol. 52, (2003), pp. 1163–1168. Search in Google Scholar

[111] H. Segev, B. Fishman, A. Ziskind, M. Shulman and J. Itskovitz-Eldor: “Differentiation of human embryonic stem cells into insulin-producing clusters”, Stem Cells, Vol. 22, (2004), pp. 265–274. Search in Google Scholar

[112] M. Polak, L. Bouchareb-Banaei, R. Scharfmann and P. Czernichow: “Early pattern of differentiation in the human pancreas”, Diabetes, Vol. 49, (2000), pp. 225–232. Search in Google Scholar

[113] J. Rajagopal, W.J. Anderson, S. Kume, O.I. Martínez and D.A. Melton: “Insulin staining of ES cell progeny from insulin uptake”, Science, Vol. 299, (2003), p. 363. Search in Google Scholar

[114] H.-J. Paek, J.-R. Morgan and M.J. Lysaght: “Sequestration and synthesis: The source of insulin in cell clusters differentiated from murine embryonic stem cells”, Stem Cells, Vol. 23, (2005), pp. 862–867. Search in Google Scholar

[115] M. Lindgren, M. Hällbrink, A. Prochiantz and Ü. Langel: “Cell-penetrating peptides”, Trends in Pharmacol. Sci., Vol. 21, (2000), pp. 99–103. Search in Google Scholar

[116] H. Noguchi, H. Kaneto, G.C. Weir, S. Bonner-Weir: “Pdx1 protein containing its own antennapedia-like protein transduction domain can transducer pancreatic duct and islet cells”, Diabetes, Vol. 52, (2003), pp. 1732–1737. Search in Google Scholar

[117] J. Dominguez-Bendala, R.L. Pastori, C. Ricordi and L. Inverardi: “Protein transduction: a novel approach to induce in vitro pancreatic differentiation”, Cell. Transplant., Vol. 15 (Suppl. 1), (2006), pp. S85–S90. Search in Google Scholar

[118] H. Noguchi and S. Matsumoto: “Protein transduction technology offers a novel therapeutic approach for diabetes”, J. Hepatobiliary Pancreat. Surg., Vol. 13, (2006), pp. 306–313. Search in Google Scholar

[119] H. Noguchi and S. Matsumoto: “Protein transduction technology: A novel therapeutic perspective”, Acta Med. Okayama, Vol. 60, (2006), pp. 1–11. Search in Google Scholar

[120] P. Collas and A.-M. Hakelien: “Teaching cells new tricks”, Trends Biotechnol., Vol. 21, (2003), pp. 354–361. Search in Google Scholar

[121] A.-M. Hakelien, K.G. Gaustad and P. Collas: “Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line”, Biochem. Biophys. Res. Commun., Vol. 316, (2004), pp. 834–841. Search in Google Scholar

[122] N. Lavon, O. Yanuka and N. Benvenisty: “The effect of over expression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells”, Stem Cells, Vol. 24, (2006), pp. 1923–1930. Search in Google Scholar

[123] I. Meivar-Levy and S. Ferber: “Rgenerative medicine: using liver to generate pancreas for treating diabetes”, Isr. Med. Assoc. J., Vol. 8, (2006), pp. 430–434. Search in Google Scholar

[124] E.H. Leiter and M. von Herrath: “Animal models have little to teach about type 1 diabetes: 2. In opposition to this proposal”, Diabetologia, Vol. 47, (2004), pp. 1657–1660. Search in Google Scholar

[125] B.O. Roep and M. Atkinson: “Animal models have little to teach us about type 1 diabetes: 1. In support of this proposal”, Diabetologia, Vol. 47, (2004), pp. 1650–1656. Search in Google Scholar

[126] L. Chatenoud: “One step towards restoration of self-tolerance in human autoimmune diseases”, Med. Sci. (Paris), Vol. 23, (2007), pp. 167–172. Search in Google Scholar

[127] C. Ramirez-Castillejo, F. Sanchez-Sanchez, C Andreu-Agullo, S.R. Ferron, J.D. Aroca-Aguilar, P. Sanchez, H. Mira, J. Escribano and I. Farinas: “Pigment epithelium-derived factor is a niche signal for neural stem cell renewal”, Nat. Neurosci., Vol. 9, (2006), pp. 331–339. Search in Google Scholar

[128] S. Miyazaki, E. Yamato and J. Miyazaki: “Regulated expression of Pdx1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells”, Diabetes, Vol. 53, (2004), pp. 1030–1037. Search in Google Scholar

Published Online: 2007-12-1
Published in Print: 2007-12-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-007-0035-9/html
Scroll to top button