Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2006

Extra-cellular chromate-reducing activity of the yeast cultures

  • Helena Ksheminska EMAIL logo , Taras Honchar , Galyna Gayda and Mykhailo Gonchar
From the journal Open Life Sciences

Abstract

This paper reports on the experimental data supporting an essential role of extra-cellular reduction in chromate detoxification by baker’s and non-conventional yeasts. A decrease of chromate content in the yeast culture coincides with an increase of Cr(III) content in extra-cellular liquid. At these conditions, cell-bound chromium level was insignificant and a dominant part of extra-cellular Cr(III) species was detected in the reaction with chromazurol S only after mineralization of the cell-free samples. This phenomenon of chromium “disappearance” can be explained by the formation of Cr(III) stable complexes with extra-cellular yeast-secreted components which are “inaccessible” in the reaction with chromazurol S without mineralization. It was shown that increasing sucrose concentration in a growth medium resulted in an increase of chromate reduction. A strong inhibition of chromate reduction by 0.25 mM sodium azide, a respiration inhibitor and a protonophore, testifies that extra-cellular chromate detoxification depends on energetic status of the yeast cells. It was shown that Cr(III)-biochelates produced in extra-cellular medium are of a different chemical nature and can be separated into at least two components by ion-exchange chromatography on anionit Dowex 1x10. A total yield of the isolated Cr(III)-biocomplexes is approximately 65 % (from initial level of chromate) with a relative molar ratio 8:5.

[1] R. Codd, C.T. Dillon, A. Levina and P.A. La: “Studies on the genotoxicity of chromium: from the test tube to the cell”, Coordination Chem. Rev., Vol. 216-217, (2001), pp. 537–582. http://dx.doi.org/10.1016/S0010-8545(00)00408-210.1016/S0010-8545(00)00408-2Search in Google Scholar

[2] M. Costa: “Potential hazards of hexavalent chromate in our drinking water”, Toxicol. Appl. Pharmacol., Vol. 188, (2003), pp. 1–5. http://dx.doi.org/10.1016/S0041-008X(03)00011-510.1016/S0041-008X(03)00011-5Search in Google Scholar

[3] H. Cherest, J. C. Davidian, D. Thomas, V. Benes, W. Ansorge and Y. Surdin-Kerjan: “Molecular characterization of two high affinity sulphate transporters in Saccharomyces cerevisiae”, Genetics, Vol. 145, (1997), pp. 627–635. Search in Google Scholar

[4] Y. Ishibashi, C. Cervantes and S. Silver: “Chromium reduction in Pseudomonas putida”, Appl. Environ. Microbiol., Vol. 56, (1990), pp. 2268–2270. Search in Google Scholar

[5] P.-C. Wang, T. Mori, K. Komori, M. Sasatsu, K. Toda and H. Ohtake: “Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions”, Appl Environ Microbiol., Vol. 55, (1989), pp. 1665–1669. Search in Google Scholar

[6] M. Fournier, Z. Dermoun, M.-C. Durand and A. Dolla: “A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress”, J. Biol. Chem., Vol. 279, (2004), pp. 1787–1793. http://dx.doi.org/10.1074/jbc.M30796520010.1074/jbc.M307965200Search in Google Scholar

[7] P.-C. Wang, K. Toda, H. Ohtake, I. Kusaka and I. Yabe: “Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate”, FEMS Microbiol. Lett., Vol. 78, (1991), pp. 11–15. Search in Google Scholar

[8] E. Lojou, P. Bianco and M. Bruschi: “Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides”, J. Electroanal. Chem., Vol. 452, (1998), pp. 167–177. http://dx.doi.org/10.1016/S0022-0728(98)00141-710.1016/S0022-0728(98)00141-7Search in Google Scholar

[9] Y.H. Kwak, D.S. Lee and H.B. Kim: “Vibrio harveyi nitroreductase is also a chromate reductase”, Appl. Environ. Microbiol., Vol. 69, (2003), pp. 4390–4395. http://dx.doi.org/10.1128/AEM.69.8.4390-4395.200310.1128/AEM.69.8.4390-4395.2003Search in Google Scholar

[10] G. J. Puzon, J. N. Petersen, A.G. Roberts, D.M. Kramer and L. Xun: “A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD+ complex”, Biochem. Biophys. Res. Commun., Vol. 294, (2002), pp. 76–81. http://dx.doi.org/10.1016/S0006-291X(02)00438-210.1016/S0006-291X(02)00438-2Search in Google Scholar

[11] J. Mazoch, R. Tesarik, V. Sedlacek, I. Kucera and J. Turanek: “Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans”, Eur. J. Biochem., Vol. 271, (2004). pp. 553–562. http://dx.doi.org/10.1046/j.1432-1033.2003.03957.x10.1046/j.1432-1033.2003.03957.xSearch in Google Scholar PubMed

[12] D.F. Ackerley, C.F. Gonzalez, M. Keyhan, R. Blake and A. Matin: “Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction”, Environ. Microbiol., Vol. 6, (2004), pp. 851–860. http://dx.doi.org/10.1111/j.1462-2920.2004.00639.x10.1111/j.1462-2920.2004.00639.xSearch in Google Scholar PubMed

[13] D.F. Ackerley, C.F. Gonzalez, C.H. Park, R. II Blake, M. Keyhan and A. Matin: “Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli”, Appl. Environ. Microbiol., Vol. 70, (2004), pp. 873–882. http://dx.doi.org/10.1128/AEM.70.2.873-882.200410.1128/AEM.70.2.873-882.2004Search in Google Scholar PubMed PubMed Central

[14] C. H. Park, M. Keyhan, B. Wielinga, S. Fendorf and A. Matin: “Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase”, Appl. Environ. Microbiol., Vol. 66, (2000), pp. 1788–1795. http://dx.doi.org/10.1128/AEM.66.5.1788-1795.200010.1128/AEM.66.5.1788-1795.2000Search in Google Scholar PubMed PubMed Central

[15] M. Pesti, Z. Gazdag, T. Emri, N. Farkas, Zs. Koósz, J. Belágyi and I. Pócsi: “Chromate sensitivity in fission yeast is caused by increased glutathione reductase activity and peroxide overproduction”, J. Basic Microbiol., Vol. 42, (2002), pp. 406–419. http://dx.doi.org/10.1002/1521-4028(200212)42:6<408::AID-JOBM408>3.0.CO;2-810.1002/1521-4028(200212)42:6<408::AID-JOBM408>3.0.CO;2-8Search in Google Scholar

[16] P. Jamnik and P. Raspor: “Stress response of yeast Candida intermedia to Cr(VI)”, J. Biochem. Mol. Toxicol., Vol. 17, (2003), pp. 316–323. http://dx.doi.org/10.1002/jbt.1009310.1002/jbt.10093Search in Google Scholar

[17] Z. Gazdag, I. Pócsi, J. Belágyi, T. Emri, Á. Blaskó, K. Takács and M. Pesti: “Chromate tolerance caused by reduced hydroxyl radical production and decreased glutathione reductase activity in Schizosaccharomyces pombe”, J. Basic Microbiol., Vol. 43, (2003), pp. 96–103. http://dx.doi.org/10.1002/jobm.20039001810.1002/jobm.200390018Search in Google Scholar

[18] E.R. Sumner, A. Shanmuganathan, T.C. Sideri, S.A. Willetts, J.E. Houghton and S.V. Avery: “Oxidative protein damage causes chromium toxicity in yeast”, Microbiology, Vol. 151, (2005), pp. 1939–1948. http://dx.doi.org/10.1099/mic.0.27945-010.1099/mic.0.27945-0Search in Google Scholar

[19] R. Ramirez-Ramirez, C. Calvo-Mendez, M. Avila-Rodriguez, P. Lappe, M. Ulloa, R. Vazquez-Juarez and J.F. Gutierrez-Corona: “CR(VI)reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry”, Anton. Leeuwenhoek., Vol. 85, (2004), pp. 63–68. http://dx.doi.org/10.1023/B:ANTO.0000020151.22858.7f10.1023/B:ANTO.0000020151.22858.7fSearch in Google Scholar

[20] O. Muter, A. Patmalnieks and A. Rapoport: “Interrelations of the yeast Candida utilis and Cr(VI): metal reduction and its distribution in the cell and medium”, Process Biochem., Vol. 36, (2001), pp. 963–970. http://dx.doi.org/10.1016/S0032-9592(01)00136-410.1016/S0032-9592(01)00136-4Search in Google Scholar

[21] J. Belagyi, M. Pas, P. Raspor, M. Pesti and T. Pali: “Effect of hexavalent chromium on eukaryotic plasma membrane studied by EPR spectroscopy”, Biochim. Biophys. Acta, Vol. 1421, (1999), pp. 175–182. http://dx.doi.org/10.1016/S0005-2736(99)00129-710.1016/S0005-2736(99)00129-7Search in Google Scholar

[22] K. Czakó-Vér, M. Batic, P. Raspor, M. Sipiczki and M. Pesti: “Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosaccharomyces pombe”, FEMS Microbiol. Lett., Vol. 178, (1999), pp. 109–115. http://dx.doi.org/10.1016/S0378-1097(99)00342-010.1016/S0378-1097(99)00342-0Search in Google Scholar

[23] B. Poljšak, Z. Gazdag, S. Jenko-Brinovec, S. Fujs, M. Pesti, J. Belagyi, S. Plesničar and P. Raspor: “Pro-oxidative versus antioxidative properties of ascorbic acid in chromium(VI) induced damage: an in vivo and in vitro approach”, J. Appl. Toxicol., Vol. 25, (2005), pp. 535–548. http://dx.doi.org/10.1002/jat.109310.1002/jat.1093Search in Google Scholar

[24] T.J. O’Brien, J.L. Fornsaglio, S. Ceryak and S.R. Patierno: “Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae”, DNA Repair (Amst.), Vol. 1, (2002), pp. 617–627. http://dx.doi.org/10.1016/S1568-7864(02)00078-210.1016/S1568-7864(02)00078-2Search in Google Scholar

[25] P.R. Burkholder, J. McVeigh and D. Moger: “Studies on some growth factors on yeasts”, J. Bacteriol., Vol. 48, (1944), pp. 385–391. Search in Google Scholar

[26] H. Marchart: “Über die Reaktion von Chrom mit Diphenylcarbazid und Diphenylcarbazon”, Anal. Chim. Acta, Vol. 30, (1964), pp. 11–17. http://dx.doi.org/10.1016/S0003-2670(00)88678-X10.1016/S0003-2670(00)88678-XSearch in Google Scholar

[27] A.E. Greenberg, J.J. Connors, D. Jenkins and M.A. Franson: Standard methods for the examination of water and wastewater, 15th ed., American Public Health Association, Washington, 1981, pp. 187–190. Search in Google Scholar

[28] R.P. Pantaler and I.V. Pulyaeva: “A spectrophotometric study of complexation between chromium and chromazurol S”, J. Anal. Chem. (Moscow), Vol. 40, (1985), pp. 1634–1639 (in Russian). Search in Google Scholar

[29] D. Fedorovych, H. Kszeminska, L. Babjak, P. Kaszycki and H. Koloczek: “Hexavalent chromium stimulation of riboflavin synthesis in flavinogenic yeast”, BioMetals, Vol. 14, (2001), pp. 23–31. http://dx.doi.org/10.1023/A:101664330769010.1023/A:1016643307690Search in Google Scholar

[30] H. Ksheminska, D. Fedorovych, L. Babyak, D. Yanovych, P. Kaszycki and H. Koloczek: “Chromium(III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium content in selected strains of representative genera”, Process Biochem., Vol. 40, (2005), pp. 1565–1572. http://dx.doi.org/10.1016/j.procbio.2004.05.01210.1016/j.procbio.2004.05.012Search in Google Scholar

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-006-0009-3/html
Scroll to top button