Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 15, 2014

Time-dependent density functional theory molecular dynamics simulation of doubly charged uracil in gas phase

  • Pablo López-Tarifa EMAIL logo , Marie-Anne Hervé du Penhoat , Rodophe Vuilleumier , Marie-Pierre Gaigeot , Ursula Rothlisberger , Ivano Tavernelli , Arnaud Le Padellec , Jean-Philippe Champeaux , Manuel Alcamí , Patrick Moretto-Capelle , Fernando Martín and Marie-Françoise Politis
From the journal Open Physics

Abstract

We use time-dependent density functional theory and Born-Oppenheimer molecular dynamics methods to investigate the fragmentation of doubly ionized uracil in gas phase. Different initial electronic excited states of the dication are obtained by removing electrons from different inner-shell orbitals of the neutral species. We show that shape-equivalent orbitals lead to very different fragmentation patterns revealing the importance of the intramolecular chemical environment. The results are in good agreement with ionion coincidence measurements of uracil collision with 100 keV protons.

[1] S. Braccini, Nucl. Phys. B 172, 8 (2007) http://dx.doi.org/10.1016/j.nuclphysbps.2007.07.00310.1016/j.nuclphysbps.2007.07.003Search in Google Scholar

[2] H. Tsujii et al., J. Radiat. Res. 48, A1–A13 (2007) http://dx.doi.org/10.1269/jrr.48.A110.1269/jrr.48.A1Search in Google Scholar

[3] J. Ward, Prog. Nucleic Acid Res. Mol. Biol. 35, 95 (1988) http://dx.doi.org/10.1016/S0079-6603(08)60611-X10.1016/S0079-6603(08)60611-XSearch in Google Scholar

[4] J. de Vries et al., Phys. Rev. Lett. 91, 053401 (2003) http://dx.doi.org/10.1103/PhysRevLett.91.05340110.1103/PhysRevLett.91.053401Search in Google Scholar PubMed

[5] B. Liu et al., Phys. Rev. Lett. 97, 133401 (2006) http://dx.doi.org/10.1103/PhysRevLett.97.13340110.1103/PhysRevLett.97.133401Search in Google Scholar PubMed

[6] J. Tabet et al., Phys. Rev. A 81, 012711 (2010) http://dx.doi.org/10.1103/PhysRevA.81.01271110.1103/PhysRevA.81.012711Search in Google Scholar

[7] J.-P. Champeaux et al., J. Phys. B: At. Mol. Opt. Phys. (2011) Search in Google Scholar

[8] F. Ban, K. Rankin, J. Gauld, R. Boyd, Theor. Chem. Acc. 108, 11 (2002) http://dx.doi.org/10.1007/s00214-002-0344-z10.1007/s00214-002-0344-zSearch in Google Scholar

[9] S. Naumov, C. von Sonntag, Radiat. Res. 169, 355 (2008) http://dx.doi.org/10.1667/RR1081.110.1667/RR1081.1Search in Google Scholar PubMed

[10] N. Jena, P. C. Mishra, J. Phys. Chem. B. 109, 14205 (2005) http://dx.doi.org/10.1021/jp050646j10.1021/jp050646jSearch in Google Scholar PubMed

[11] A. Kumar, M. Sevilla, Radiation effects on DNA: theoretical investigations of electron hole and excitation pathways to DNA damage (Springer-Verlag, Berlin, 2008) 10.1007/978-1-4020-8184-2_20Search in Google Scholar

[12] X. Li, M. Sevilla, Adv. Quant. Chem. 52, 59 (2007) http://dx.doi.org/10.1016/S0065-3276(06)52004-010.1016/S0065-3276(06)52004-0Search in Google Scholar

[13] R. H. D. Lyngdoh et al., Acc. Chem. Res. 42, 563 (2009) http://dx.doi.org/10.1021/ar800077q10.1021/ar800077qSearch in Google Scholar PubMed

[14] C. J. Mundy, M. E. Colvin, A. A. Quong, J. Phys. Chem. A 106, 10063 (2002) http://dx.doi.org/10.1021/jp021290410.1021/jp0212904Search in Google Scholar

[15] Y. Wu, C. Mundy, M. Colvin, R. Car, J. Phys. Chem. A 108, 2922 (2004) http://dx.doi.org/10.1021/jp036359210.1021/jp0363592Search in Google Scholar

[16] E. Runge, E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984) http://dx.doi.org/10.1103/PhysRevLett.52.99710.1103/PhysRevLett.52.997Search in Google Scholar

[17] A. Castro, M. A. L. Marques, J. A. Alonso, G. F. Bertsch, A. Rubio, Eur. Phys. J. D 28, 211 (2004) http://dx.doi.org/10.1140/epjd/e2003-00306-310.1140/epjd/e2003-00306-3Search in Google Scholar

[18] I. Tavernelli, U. F. Rohrig, U. Rothlisberger, Mol. Phys. 103, 963 (2005) http://dx.doi.org/10.1080/0026897051233133937810.1080/00268970512331339378Search in Google Scholar

[19] G. Avendaño-Franco, B. Piraux, M. Grüning, X. Gonze, Theor. Chem. Acc. 131, 1289 (2012) http://dx.doi.org/10.1007/s00214-012-1289-510.1007/s00214-012-1289-5Search in Google Scholar

[20] I. Tavernelli et al., Chem. Phys. Chem. 9, 2099 (2008) http://dx.doi.org/10.1002/cphc.20080017710.1002/cphc.200800177Search in Google Scholar PubMed

[21] L. Adoui et al. J. Phys. B: At. Mol. Opt. Phys. (2009) Search in Google Scholar

[22] P. López-Tarifa et al., Phys. Rev. Lett. 107, 023202 (2011) http://dx.doi.org/10.1103/PhysRevLett.107.02320210.1103/PhysRevLett.107.023202Search in Google Scholar PubMed

[23] B. Coupier et al., Eur. Phys. J. D 20, 459 (2002) http://dx.doi.org/10.1140/epjd/e2002-00166-310.1140/epjd/e2002-00166-3Search in Google Scholar

[24] J. de Vries et al., J. Phys. B 35, 4373 (2002) http://dx.doi.org/10.1088/0953-4075/35/21/30410.1088/0953-4075/35/21/304Search in Google Scholar

[25] J. de Vries, R. Hoekstra, R. Morgenstern, T. Schlathoelter, Phys. Scr. T 110, 336 (2004) http://dx.doi.org/10.1238/Physica.Topical.110a0033610.1238/Physica.Topical.110a00336Search in Google Scholar

[26] T. Schlatholter, R. Hoekstra, R. Morgenstern, Int. J. Mass Spectrom. 233, 173 (2004) http://dx.doi.org/10.1016/j.ijms.2003.12.02910.1016/j.ijms.2003.12.029Search in Google Scholar

[27] P. Moretto-Capelle, A. Le Padellec, Phys. Rev. A 74, 062705 (2006) http://dx.doi.org/10.1103/PhysRevA.74.06270510.1103/PhysRevA.74.062705Search in Google Scholar

[28] N. Troullier, J. L. Martins, Phys. Rev. B 43, 1993 (1991) http://dx.doi.org/10.1103/PhysRevB.43.199310.1103/PhysRevB.43.1993Search in Google Scholar PubMed

[29] A. D. Becke, Phys. Rev. A 38, 3098 (1988) http://dx.doi.org/10.1103/PhysRevA.38.309810.1103/PhysRevA.38.3098Search in Google Scholar

[30] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988) http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Search in Google Scholar

[31] R. Car, M. Parrinello, Phys. Rev. Lett. 22, 2471 (1985) http://dx.doi.org/10.1103/PhysRevLett.55.247110.1103/PhysRevLett.55.2471Search in Google Scholar PubMed

[32] M. P. Gaigeot et al., J. Phys. B: At. Mol. Opt. Phys. 40, 1 (2007) http://dx.doi.org/10.1088/0953-4075/40/1/00110.1088/0953-4075/40/1/001Search in Google Scholar

[33] I. Tavernelli, M. P. Gaigeot, R. Vuilleumier, C. Stia, M. A. Hervé du Penhoat, M. F. Politis, Chem. Phys. Chem. 9, 2099 (2008) http://dx.doi.org/10.1002/cphc.20080017710.1002/cphc.200800177Search in Google Scholar PubMed

[34] W. Tang, E. Sanville, G. Henkelman, J. Phys.: Comput. Mater. 21, 084204 (2009) 10.1088/0953-8984/21/8/084204Search in Google Scholar PubMed

[35] P. Cafarelli et al., AIP Conf. Proc. 1080, 71 (2008) http://dx.doi.org/10.1063/1.305899010.1063/1.3058990Search in Google Scholar

[36] D. M. P. Holland, A. W. Potts, L. Karlsson, I. L. Zaytseva, A. B. Trofimov, J. Schirmer, Chem. Phys. 353, 47 (2008) http://dx.doi.org/10.1016/j.chemphys.2008.07.02210.1016/j.chemphys.2008.07.022Search in Google Scholar

[37] N. L. Doltsinis, D. Marx, J. Theor. Comp. Chem. 1, 319 (2002) http://dx.doi.org/10.1142/S021963360200025710.1142/S0219633602000257Search in Google Scholar

[38] A. J. Cohen, P. Mori-Sánchez, W. Yang, Science 321, 792 (2008) http://dx.doi.org/10.1126/science.115872210.1126/science.1158722Search in Google Scholar PubMed

[39] P. López-Tarifa et al., Angew. Chem. 52, 3160 (2013) http://dx.doi.org/10.1002/anie.20120803810.1002/anie.201208038Search in Google Scholar PubMed

Published Online: 2014-2-15
Published in Print: 2014-2-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-014-0428-0/html
Scroll to top button