Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 17, 2012

Extraordinary magnetoresistance: sensing the future

  • Thomas Hewett EMAIL logo and Feodor Kusmartsev
From the journal Open Physics

Abstract

Simulations utilising the finite element method (FEM) have been produced in order to investigate aspects of circular extraordinary magnetoresistance (EMR) devices. The effect of three specific features on the resultant magnetoresistance were investigated: the ratio of the metallic to semiconducting conductivities (σ M/σ S); the semiconductor mobility; and the introduction of an intermediate region at the semiconductormetal interface in order to simulate a contact resistance. In order to obtain a large EMR effect the conductivity ratio (σ M/σ S) is required to be larger than two orders of magnitude; below this critical value the resultant magnetoresistance effect is dramatically reduced. Large mobility semiconductors exhibit larger EMR values for a given field (below saturation) and reduce the magnetic field required to produce saturation of the magnetoresistance. This is due to a larger Hall angle produced at a given magnetic field and is consistent with the mechanism of the EMR effect. Since practical magnetic field sensors are required to operate at low magnetic fields, high mobility semiconductors are required in the production of more sensitive EMR sensors. The formation of a Schottky barrier at the semiconductor-metal interface has been modelled with the introduction of a contact resistance at the semiconductor-metal interface. Increasing values of contact resistance are found to reduce the EMR effect with it disappearing altogether for large values. This has been shown explicitly by looking at the current flow in the system and is consistent with the mechanism of the EMR effect. The interface resistance was used to fit the simulated model to existing experimental data. The best fit occurred with an interface with resistivity of 1.55×10−4 m (overestimate). The EMR effect holds great potential with regard to its future application to magnetic field sensors. The design of any such devices should incorporate high mobility materials (such as graphene) along with the specific features presented in this paper in order to produce effective magnetic field sensors.

[1] S. A. Solin, T. Thio, D. R. Hines, J. J. Heremans, Science 289, 1530 (2000) http://dx.doi.org/10.1126/science.289.5484.153010.1126/science.289.5484.1530Search in Google Scholar PubMed

[2] S. A. Solin, Sci. Am. 291, 70 (2004) http://dx.doi.org/10.1038/scientificamerican0704-7010.1038/scientificamerican0704-70Search in Google Scholar PubMed

[3] T. Zhou, D. R. Hines, S. A. Solin, Appl. Phys. Lett. 78, 667 (2001) http://dx.doi.org/10.1063/1.134347210.1063/1.1343472Search in Google Scholar

[4] S. A. Solin et al., IEEE Trans. Magn. 38, 89 (2002) http://dx.doi.org/10.1109/TMAG.2002.98891710.1109/TMAG.2002.988917Search in Google Scholar

[5] S. A. Solin et al., Appl. Phys. Lett. 80, 4012 (2002) http://dx.doi.org/10.1063/1.148123810.1063/1.1481238Search in Google Scholar

[6] J. Suh, W. Kim, J. Chang, S. H. Han, E. K. Kim, J. Korean. Phys. Soc. 55, 577 (2009) http://dx.doi.org/10.3938/jkps.55.57710.3938/jkps.55.577Search in Google Scholar

[7] A. L. Friedman, J. T. Robinson, F. K. Perkins, P. M. Campbell, Appl. Phys. Lett. 99, 022108 (2011) http://dx.doi.org/10.1063/1.361056510.1063/1.3610565Search in Google Scholar

[8] J. Lu et al., Nano Lett. 11, 2973 (2011) http://dx.doi.org/10.1021/nl201538m10.1021/nl201538mSearch in Google Scholar PubMed

[9] C. H. Möller et al., Appl. Phys. Lett. 80, 3988 (2002) http://dx.doi.org/10.1063/1.148198210.1063/1.1481982Search in Google Scholar

[10] T. H. Hewett, F. V. Kusmartsev, Int. J. Mod. Phys. B. 23, 4158 (2009) http://dx.doi.org/10.1142/S021797920906334110.1142/S0217979209063341Search in Google Scholar

[11] T. H. Hewett, F. V. Kusmartsev, Phys. Rev. B 82, 212404 (2010) http://dx.doi.org/10.1103/PhysRevB.82.21240410.1103/PhysRevB.82.212404Search in Google Scholar

[12] J. Moussa et al., Phys. Rev. B 64, 184410 (2001) http://dx.doi.org/10.1103/PhysRevB.64.18441010.1103/PhysRevB.64.184410Search in Google Scholar

[13] J. Moussa, L. R. Ram-Mohan, A. C. H. Rowe, S. A. Solin, J. Appl. Phys. 94, 1110 (2003) http://dx.doi.org/10.1063/1.157689710.1063/1.1576897Search in Google Scholar

[14] C. B. Rong, H. W. Zhang, J. r. Sun, B. G. Shen, J. Magn. Magn. Mater. 301, 407 (2006) http://dx.doi.org/10.1016/j.jmmm.2005.07.01710.1016/j.jmmm.2005.07.017Search in Google Scholar

[15] C. H. Möller, D. Grundler, O. Kronenworth, C. Heyn, D. Heitmann, J. Supercond. 16, 195 (2003) http://dx.doi.org/10.1023/A:102324643162410.1023/A:1023246431624Search in Google Scholar

[16] M. Holz, O. Kronenworth, D. Grundler, Phys. Rev. B. 67, 195312 (2003) http://dx.doi.org/10.1103/PhysRevB.67.19531210.1103/PhysRevB.67.195312Search in Google Scholar

[17] M. Holz, O. Kronenworth, D. Grundler, Appl. Phys. Lett. 83, 3344 (2003) http://dx.doi.org/10.1063/1.162107710.1063/1.1621077Search in Google Scholar

[18] M. Holz, O. Kronenworth, D. Grundler, Physica E 21, 897 (2004) http://dx.doi.org/10.1016/j.physe.2003.11.14610.1016/j.physe.2003.11.146Search in Google Scholar

[19] K. S. Novoselov et al., Science 306, 666 (2004) http://dx.doi.org/10.1126/science.110289610.1126/science.1102896Search in Google Scholar PubMed

[20] K. S. Novoselov et al., P. Natl. Acad. Sci. USA 102, 0451 (2005) http://dx.doi.org/10.1073/pnas.050284810210.1073/pnas.0502848102Search in Google Scholar PubMed PubMed Central

[21] F. V. Kusmartsev, A. M. Tsvelick, Pis’ma Zh. Eksp. Teor. Fiz. 42, 207 (1986) Search in Google Scholar

[22] T. H. Hewett, M. B. Gaifullin, F. A. Mamari, O. E. Kusmartseva and F. V. Kusmartsev, Preprint, Loughborough University (2012) Search in Google Scholar

[23] A. O’Hare, F. V. Kusmartsev, and K. I. Kugel, Nano Lett. doi:10.1021/nl204283q (2012) 10.1021/nl204283qSearch in Google Scholar PubMed

[24] S. A. Bulgadaev and F. V. Kusmartsev, Phys. Lett. A 342, 188 (2005). http://dx.doi.org/10.1016/j.physleta.2005.04.09610.1016/j.physleta.2005.04.096Search in Google Scholar

[25] L. J. van der Pauw, Philips Tech. Rev. 20, 220 (1958) Search in Google Scholar

Published Online: 2012-6-17
Published in Print: 2012-6-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-012-0015-1/html
Scroll to top button