Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 19, 2013

Aqueous photocatalytic oxidation of prednisolone

  • Deniss Klauson EMAIL logo , Jana Pilnik-Sudareva , Natalja Pronina , Olga Budarnaja , Marina Krichevskaya , Aleksandr Käkinen , Katre Juganson and Sergei Preis
From the journal Open Chemistry

Abstract

The research into the aqueous photocatalytic oxidation of the anti-inflammatory drug prednisolone was undertaken with P25 titanium dioxide (Evonik) and visible light-sensitive sol-gel synthesized titania-based photocatalysts containing carbon, sulphur, and iron. Possible prednisolone photocatalytic oxidation reaction pathways were proposed based on a number of oxidation by-products determined in the present study. The prednisolone adsorption properties, effects of initial prednisolone concentration, pH, usual wastewater matrix admixtures, like carbamide and sucrose, were studied. The nontoxicity of doped catalysts towards Tetrahymena thermophila, a ciliate protozoa present in the activated sludge, indicated their lower oxidative ability compared to P25, but also implied their potential application in pre-treatment of toxic hazardous materials under VIS or solar radiation before the biological degradation stage.

[1] A. Y.C. Lin, T.H. Yu, S.K. Lateef, J. Hazard. Mater. 167, 1163 (2009) http://dx.doi.org/10.1016/j.jhazmat.2009.01.10810.1016/j.jhazmat.2009.01.108Search in Google Scholar

[2] M. DellaGreca, A. Fiorentino, M. Isidori, M. Lavorgna, L. Previtera, M. Rubino, F. Temussi, Chemosphere 54, 629 (2004) http://dx.doi.org/10.1016/j.chemosphere.2003.09.00810.1016/j.chemosphere.2003.09.008Search in Google Scholar

[3] Y. Kitaichi, A. Miyamoto, K. Uchikura, J. Health Sci. 56, 547 (2010) http://dx.doi.org/10.1248/jhs.56.54710.1248/jhs.56.547Search in Google Scholar

[4] H. Chang, J.Y. Hu, B. Shao, Environ. Sci. Technol. 41, 3462 (2007) http://dx.doi.org/10.1021/es062746o10.1021/es062746oSearch in Google Scholar

[5] K. Ikehata, N.J. Naghashkar, M.G. Ei-Din, Ozone Sci. Eng. 28, 353 (2006) http://dx.doi.org/10.1080/0191951060098593710.1080/01919510600985937Search in Google Scholar

[6] B. Langlais, D. Reckow, D. Brink, Ozone in Water Treatment. Application and engineering (Lewis Publishers, Inc., Chelsea, 1991) Search in Google Scholar

[7] B. K. Nandi, R. Uppaluri, M.K. Purkait, Appl. Clay Sci. 42, 102 (2008) http://dx.doi.org/10.1016/j.clay.2007.12.00110.1016/j.clay.2007.12.001Search in Google Scholar

[8] S. Liu, G.-G. Ying, J.-L. Zhao, F. Chen, B. Yang, L.-J. Zhou, H.-j. Lai, J. Chromatography A 1218, 1367 (2011) http://dx.doi.org/10.1016/j.chroma.2011.01.01410.1016/j.chroma.2011.01.014Search in Google Scholar

[9] D. Klauson, J. Babkina, K. Stepanova, M. Krichevskaya, S. Preis, Catal. Today 151, 39 (2010) http://dx.doi.org/10.1016/j.cattod.2010.01.01510.1016/j.cattod.2010.01.015Search in Google Scholar

[10] R. J.S. Lewis, Hawley’s Condensed Chemical Dictionary, 14 edition (John Wiley and Sons, Inc., Chelsea, 2001) Search in Google Scholar

[11] D. Hansch, A. Leo, D. Hoekman, Exploring QSAR — Hydrophobic, Electronic, and Steric Constants (American Chemical Society, Washington, DC, 1995) Search in Google Scholar

[12] S. H. Yalkowski, Y. He, Handbook of Aqueous Solubility data: An Extensive Compilation of Aqueous Solubility data for Organic Compounds Extracted from the AQUASOL dATAbase (CRC Press LLC, Boca Raton, FL, 2003) http://dx.doi.org/10.1201/978020349039610.1201/9780203490396Search in Google Scholar

[13] M. J. O’Neil, The Merck Index — An Encyclopedia of Chemicals, Drugs and Biologicals., 13 edition (Merck and Co., Inc, Whitehouse Station, NJ, 2001) Search in Google Scholar

[14] US EPA, Estimation Program Interface (EPI) Suite. US EPA, Estimation Program Interface (EPI) Suite. Ver. 3.12 (US Environmental Protection Agency (EPA), USA, November 30, 2004) http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm Search in Google Scholar

[15] B. Sun, M. Sato, J.S. Clements, J. Electrostatics 39, 189 (1997) http://dx.doi.org/10.1016/S0304-3886(97)00002-810.1016/S0304-3886(97)00002-8Search in Google Scholar

[16] D. Bahnemann, Solar Energy 77, 445 (2004) http://dx.doi.org/10.1016/j.solener.2004.03.03110.1016/j.solener.2004.03.031Search in Google Scholar

[17] R. W. Matthews, Water Research 20, 569 (1986) http://dx.doi.org/10.1016/0043-1354(86)90020-510.1016/0043-1354(86)90020-5Search in Google Scholar

[18] J. Chen, D.F. Ollis, W.H. Rulkens, H. Bruning, Water Research 33, 669 (1999) http://dx.doi.org/10.1016/S0043-1354(98)00262-010.1016/S0043-1354(98)00262-0Search in Google Scholar

[19] V. Brezová, Š. Vodný, M. Veselý, M. Čeppan, L. Lapčík, J. Photochem. Photobiol. A 56, 125 (1991) http://dx.doi.org/10.1016/1010-6030(91)80012-710.1016/1010-6030(91)80012-7Search in Google Scholar

[20] Y. Zhang, J.C. Crittenden, D.W. Hand, D.L. Perram, Environ. Sci. Technol. 28, 435 (1994) http://dx.doi.org/10.1021/es00052a01510.1021/es00052a015Search in Google Scholar

[21] C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, W.F. Maier, Appl. Catal. B 32, 215 (2001) http://dx.doi.org/10.1016/S0926-3373(01)00141-210.1016/S0926-3373(01)00141-2Search in Google Scholar

[22] T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Appl. Catal. B 42, 403 (2003) http://dx.doi.org/10.1016/S0926-3373(02)00269-210.1016/S0926-3373(02)00269-2Search in Google Scholar

[23] Z. Wang, W. Cai, X. Hong, X. Zhao, F. Xu, C. Cai, Appl. Catal. B 57, 223 (2005) http://dx.doi.org/10.1016/j.apcatb.2004.11.00810.1016/j.apcatb.2004.11.008Search in Google Scholar

[24] D. Klauson, E. Portjanskaja, S. Preis, Environ. Chem. Lett. 6, 35 (2008) http://dx.doi.org/10.1007/s10311-007-0109-y10.1007/s10311-007-0109-ySearch in Google Scholar

[25] D. Klauson, E. Portjanskaya, O. Budarnaja, M. Krichevskaya, S. Preis, Catal. Comm. 11, 715 (2010) http://dx.doi.org/10.1016/j.catcom.2010.02.00110.1016/j.catcom.2010.02.001Search in Google Scholar

[26] Z. Liu, D.D. Sun, P. Guo, J.O. Leckie, Chem. Eur. J. 13, 1851 (2007) http://dx.doi.org/10.1002/chem.20060109210.1002/chem.200601092Search in Google Scholar

[27] S. J. Kirkpatrick, Dental Mater. 21, 21 (2005) http://dx.doi.org/10.1016/j.dental.2004.10.00210.1016/j.dental.2004.10.002Search in Google Scholar

[28] G. Boeije, R. Corstanje, A. Rottiers, D. Schowanek, Chemosphere 38, 699 (1999) http://dx.doi.org/10.1016/S0045-6535(98)00311-710.1016/S0045-6535(98)00311-7Search in Google Scholar

[29] T. Karpova, S. Preis, J. Kallas, Int. J. Photoenergy 2007, Article ID 53853 (2007) 10.1155/2007/53853Search in Google Scholar

[30] L. S. Clesceri, A.E. Greenberg, R.R. Trussel, Standard methods for the examination of water and wastewater (APHA, AWWA, WPCF, Washington, DC, 1989) Search in Google Scholar

[31] M. Mortimer, K. Kasemets, A. Kahru, Toxicology 269, 182 (2010) http://dx.doi.org/10.1016/j.tox.2009.07.00710.1016/j.tox.2009.07.007Search in Google Scholar PubMed

[32] E. Vindimian, MSExcel macro REGTOX EV7.0.5.xls (Eric Vindimian, France) http://www.normalesup.org/~vindimian/ 2011 Search in Google Scholar

[33] S. Preis, M. Krichevskaya, Y. Terentyeva, A. Moiseev, J. Kallas, J. Adv. Oxid. Technol. 5, 77 (2002) 10.1515/jaots-2002-0110Search in Google Scholar

[34] M. Krichevskaya, T. Malygina, S. Preis, J. Kallas, Water Sci. Technol. 44, 1 (2001) Search in Google Scholar

[35] M. Krichevskaya, A. Kachina, T. Malygina, S. Preis, J. Kallas, Int. J. Photoenergy 5, 81 (2003) http://dx.doi.org/10.1155/S1110662X0300017510.1155/S1110662X03000175Search in Google Scholar

[36] D. Klauson, S. Preis, Int. J. Photoenergy 2007, Article ID 89359 (2007) 10.1155/2007/89359Search in Google Scholar

[37] K. Mogyorósi, N. Balázs, D.F. Srankó, E. Tombácz, I. Dékány, A. Oszkó, P. Sipos, A. Dombi, Appl. Catal. B 96, 577 (2010) http://dx.doi.org/10.1016/j.apcatb.2010.03.00710.1016/j.apcatb.2010.03.007Search in Google Scholar

[38] D. M. Metzler, M.H. Li, A. Erdem, C.P. Huang, Chem. Eng. J. 170, 538 (2011) http://dx.doi.org/10.1016/j.cej.2011.02.00210.1016/j.cej.2011.02.002Search in Google Scholar

[39] L. Brunet, D.Y. Lyon, E.M. Hotze, P.J.J. Alvarez, M.R. Wiesner, Environ. Sci. Technol. 43, 4355 (2009) http://dx.doi.org/10.1021/es803093t10.1021/es803093tSearch in Google Scholar

[40] P. Madoni, Water Research 28, 67 (1994) http://dx.doi.org/10.1016/0043-1354(94)90120-110.1016/0043-1354(94)90120-1Search in Google Scholar

[41] M. P. Sauvant, D. Pepin, E. Piccinni, Chemosphere 38, 1631 (1999) http://dx.doi.org/10.1016/S0045-6535(98)00381-610.1016/S0045-6535(98)00381-6Search in Google Scholar

[42] G. Esteban, C. Tellez, L.M. Bautista, Water Research 25, 967 (1991) http://dx.doi.org/10.1016/0043-1354(91)90145-G10.1016/0043-1354(91)90145-GSearch in Google Scholar

Published Online: 2013-7-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-013-0290-8/html
Scroll to top button