Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2008

Watson-crick base pairs with thiocarbonyl groups: How sulfur changes the hydrogen bonds in DNA

  • Célia Guerra EMAIL logo , Evert Baerends and F. Bickelhaupt
From the journal Open Chemistry

Abstract

We have theoretically analyzed mimics of Watson-Crick AT and GC base pairs in which N-H···O hydrogen bonds are replaced by N-H···S, using the generalized gradient approximation (GGA) of density functional theory at BP86/TZ2P level. The general effect of the above substitutions is an elongation and a slight weakening of the hydrogen bonds that hold together the base pairs. However, the precise effects depend on how many, and in particular, on which hydrogen bonds AT and GC are substituted.. Another purpose of this work is to clarify the relative importance of electrostatic attraction versus orbital interaction in the hydrogen bonds involved in the mimics, using a quantitative bond energy decomposition scheme. At variance with widespread believe, the orbital interaction component in these hydrogen bonds is found to contribute more than 40% of the attractive interactions and is thus of the same order of magnitude as the electrostatic component, which provides the remaining attraction.

[1] P. Karran, Br. Med. Bull., 79–80, 153 (2006) http://dx.doi.org/10.1093/bmb/ldl02010.1093/bmb/ldl020Search in Google Scholar PubMed

[2] L. J. J. Derijks, L. P. L. Gilissen, P. M. Hooymans, D. W. Hommes, Aliment. Pharmacol. Ther., 24, 715 (2006) http://dx.doi.org/10.1111/j.1365-2036.2006.02980.x10.1111/j.1365-2036.2006.02980.xSearch in Google Scholar PubMed

[3] E. B. Astwood, JAMA, 122 (1943) 78 Search in Google Scholar

[4] L. Somerville et al., J. Biol. Chem., 278, 1005 (2003) http://dx.doi.org/10.1074/jbc.M20424320010.1074/jbc.M204243200Search in Google Scholar PubMed

[5] N. Spackova, E. Cubero, J. Sponer, M. Orozco, J. Amer. Chem. Soc., 126, 146421 (2004) http://dx.doi.org/10.1021/ja046862810.1021/ja0468628Search in Google Scholar PubMed

[6] J. Sponer, J. Leszczynski, P. Hobza, J. Phys. Chem. A, 101, 9489 (1997) http://dx.doi.org/10.1021/jp972040410.1021/jp9720404Search in Google Scholar

[7] S. Kawahara, T. Uchimaru, Eur. J. Org. Chem. 2577 (2003) 10.1002/ejoc.200300015Search in Google Scholar

[8] S. Kawahara, T. Uchimaru, K. Taira, M. Sekine, J. Phys. Chem. A, 106, 3207 (2002) http://dx.doi.org/10.1021/jp013953810.1021/jp0139538Search in Google Scholar

[9] I. Dabkowska, P. Jurecka, P. Hobza, J. Chem. Phys. 122, art. 204322 (2005) 10.1063/1.1906205Search in Google Scholar PubMed

[10] J. Sponer, P. Jurecka, P. Hobza, J. Am. Chem. Soc. 126, 10142 (2004) http://dx.doi.org/10.1021/ja048436s10.1021/ja048436sSearch in Google Scholar PubMed

[11] P. Hobza, J. Sponer, Chem. Rev. 99, 3247 (1999) http://dx.doi.org/10.1021/cr980025510.1021/cr9800255Search in Google Scholar PubMed

[12] J. Bertran, A. Oliva, L. Rodríguez-Santiago, M. Sodupe, J. Am. Chem. Soc. 120, 8159 (1998) http://dx.doi.org/10.1021/ja980441710.1021/ja9804417Search in Google Scholar

[13] K. Brameld, S. Dasgupta, W. A. Goddard III, J. Phys. Chem. B 101, 4851 (1997) http://dx.doi.org/10.1021/jp970199a10.1021/jp970199aSearch in Google Scholar

[14] J. Sponer, J. Leszczynski, P. Hobza, J. Phys. Chem., 100, 1965 (1996) http://dx.doi.org/10.1021/jp952760f10.1021/jp952760fSearch in Google Scholar

[15] I. R. Gould, P. A. Kollman, J. Am. Chem. Soc., 116, 2493 (1994) http://dx.doi.org/10.1021/ja00085a03310.1021/ja00085a033Search in Google Scholar

[16] R. Santamaria, A. Vázquez, J. Comp. Chem., 15, 981 (1994) http://dx.doi.org/10.1002/jcc.54015090710.1002/jcc.540150907Search in Google Scholar

[17] J. Sponer, P. Hobza, J. Phys. Chem. A, 104, 4592 (2000) http://dx.doi.org/10.1021/jp994388010.1021/jp9943880Search in Google Scholar

[18] P. Hobza, J. Sponer, E. Cubero, M. Orozco, F. J. Luque, J. Phys. Chem. B, 104, 6286 (2000) http://dx.doi.org/10.1021/jp000713410.1021/jp0007134Search in Google Scholar

[19] J. Poater, X. Fradera, M. Solà, M. Duran, S. Simon, Chem. Phys. Lett., 369, 248 (2003) http://dx.doi.org/10.1016/S0009-2614(02)01928-010.1016/S0009-2614(02)01928-0Search in Google Scholar

[20] C. Fonseca Guerra, F. M. Bickelhaupt, Angew. Chem., 111, 3120 (1999) http://dx.doi.org/10.1002/(SICI)1521-3757(19991004)111:19<3120::AID-ANGE3120>3.0.CO;2-D10.1002/(SICI)1521-3757(19991004)111:19<3120::AID-ANGE3120>3.0.CO;2-DSearch in Google Scholar

[21] C. Fonseca Guerra, F. M. Bickelhaupt, Angew. Chem. Int. Ed., 38, 2942 (1999) http://dx.doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2942::AID-ANIE2942>3.0.CO;2-V10.1002/(SICI)1521-3773(19991004)38:19<2942::AID-ANIE2942>3.0.CO;2-VSearch in Google Scholar

[22] C. Fonseca Guerra, F. M. Bickelhaupt, J. G. Snijders, E. J. Baerends, J. Am. Chem. Soc., 122, 4117 (2000) http://dx.doi.org/10.1021/ja993262d10.1021/ja993262dSearch in Google Scholar

[23] C. Fonseca Guerra, F. M. Bickelhaupt, J. G. Snijders, E. J. Baerends, Chem. Eur. J., 5, 3581 (1999) http://dx.doi.org/10.1002/(SICI)1521-3765(19991203)5:12<3581::AID-CHEM3581>3.0.CO;2-Y10.1002/(SICI)1521-3765(19991203)5:12<3581::AID-CHEM3581>3.0.CO;2-YSearch in Google Scholar

[24] C. Fonseca Guerra, E. J. Baerends and F. M Bickelhaupt, Crystal Growth & Design, 2, 239 (2002) http://dx.doi.org/10.1021/cg010034y10.1021/cg010034ySearch in Google Scholar

[25] C. Fonseca Guerra, T. van der Wijst, F. M. Bickelhaupt, Chem. Eur. J., 12, 3032 (2006) http://dx.doi.org/10.1002/chem.20050130110.1002/chem.200501301Search in Google Scholar

[26] F. M. Bickelhaupt, E. J. Baerends, In: K. B. Lipkowitz and D. B. Boyd (Eds.) Rev. Comput. Chem. (Wiley-VCH: New York, 2000) 15, 1 Search in Google Scholar

[27] L. Stryer, Biochemistry (W.H. Freeman and Company, New York, 1988) Chapter 1 Search in Google Scholar

[28] D. Voet, J. G. Voet, Biochemistry (Wiley, New York, 1995) Chapter 2 Search in Google Scholar

[29] G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures (Springer-Verlag, Berlin, 1991,) Chapter 2 10.1007/978-3-642-85135-3Search in Google Scholar

[30] G. A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford University Press, New York, 1997) Chapter 2 Search in Google Scholar

[31] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond (Oxford University Press, New York, 1999) Chapter 1 Search in Google Scholar

[32] C. Fonseca Guerra, F. M. Bickelhaupt, Angew. Chem., 114, 2194 (2002) http://dx.doi.org/10.1002/1521-3757(20020617)114:12<2194::AID-ANGE2194>3.0.CO;2-410.1002/1521-3757(20020617)114:12<2194::AID-ANGE2194>3.0.CO;2-4Search in Google Scholar

[33] C. Fonseca Guerra, F. M. Bickelhaupt, Angew. Chem. Int. Ed., 41, 2092 (2002) http://dx.doi.org/10.1002/1521-3773(20020617)41:12<2092::AID-ANIE2092>3.0.CO;2-M10.1002/1521-3773(20020617)41:12<2092::AID-ANIE2092>3.0.CO;2-MSearch in Google Scholar

[34] C. Fonseca Guerra, F. M. Bickelhaupt, J. Chem. Phys., 119, 4262 (2003) http://dx.doi.org/10.1063/1.159249410.1063/1.1592494Search in Google Scholar

[35] C. Fonseca Guerra, F. M. Bickelhaupt, E. J. Baerends, ChemPhysChem, 5, 481 (2004) http://dx.doi.org/10.1002/cphc.20030106910.1002/cphc.200301069Search in Google Scholar

[36] G. te Velde et al., J. Comput. Chem., 22, 931 (2001) http://dx.doi.org/10.1002/jcc.105610.1002/jcc.1056Search in Google Scholar

[37] C. Fonseca Guerra, O. Visser, J. G. Snijders, G. te Velde, E. J. Baerends, In: E. Clementi and G. Corongiu (Eds.) Methods and Techniques for Computational Chemistry (STEF: Cagliari, 1995) 305 Search in Google Scholar

[38] E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys., 2, 41 (1973) http://dx.doi.org/10.1016/0301-0104(73)80059-X10.1016/0301-0104(73)80059-XSearch in Google Scholar

[39] E. J. Baerends, P. Ros, Chem. Phys., 8, 412 (1975) http://dx.doi.org/10.1016/0301-0104(75)80152-210.1016/0301-0104(75)80152-2Search in Google Scholar

[40] E. J. Baerends, P. Ros, Int. J. Quantum. Chem. Symp., 12, 169 (1978) Search in Google Scholar

[41] C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc., 99 391 (1998) http://dx.doi.org/10.1007/s00214005002110.1007/s002140050021Search in Google Scholar

[42] P. M. Boerrigter, G. te Velde, E. J. Baerends, Int. J. Quantum Chem., 33, 87 (1988) http://dx.doi.org/10.1002/qua.56033020410.1002/qua.560330204Search in Google Scholar

[43] G. te Velde, E. J. Baerends, J. Comp. Phys. 99, 84 (1992) http://dx.doi.org/10.1016/0021-9991(92)90277-610.1016/0021-9991(92)90277-6Search in Google Scholar

[44] J. G. Snijders, E. J. Baerends, P. Vernooijs, At. Nucl. Data Tables, 26, 483 (1982) http://dx.doi.org/10.1016/0092-640X(81)90004-810.1016/0092-640X(81)90004-8Search in Google Scholar

[45] J. Krijn, E. J. Baerends, Fit-Functions in the HFS-Method; Internal Report (in Dutch), Vrije Universiteit, Amsterdam, 1984 Search in Google Scholar

[46] L. Versluis, T. Ziegler, J. Chem. Phys. 88, 322 (1988) http://dx.doi.org/10.1063/1.45460310.1063/1.454603Search in Google Scholar

[47] J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4, (McGraw-Hill, New York, 1974) Search in Google Scholar

[48] A. D. Becke, J. Chem. Phys., 84, 4524 (1986) http://dx.doi.org/10.1063/1.45002510.1063/1.450025Search in Google Scholar

[49] A. D. Becke, Phys. Rev. A, 38, 3098 (1988) http://dx.doi.org/10.1103/PhysRevA.38.309810.1103/PhysRevA.38.3098Search in Google Scholar

[50] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 58, 1200 (1980) http://dx.doi.org/10.1139/p80-15910.1139/p80-159Search in Google Scholar

[51] J. P. Perdew, Phys. Rev. B, 33, 8822 (1986) (Erratum: Phys. Rev. B, 34, 7406 (1986) http://dx.doi.org/10.1103/PhysRevB.33.882210.1103/PhysRevB.33.8822Search in Google Scholar PubMed

[52] L. Fan, T. Ziegler, J. Chem. Phys., 94, 6057 (1991) http://dx.doi.org/10.1063/1.46044410.1063/1.460444Search in Google Scholar

[53] M. Swart, F.M. Bickelhaupt, J. Comput. Chem., (in press) Search in Google Scholar

[54] K. Morokuma, J. Chem. Phys., 55, 1236 (1971) http://dx.doi.org/10.1063/1.167621010.1063/1.1676210Search in Google Scholar

[55] K. Kitaura, K. Morokuma, Int. J. Quantum. Chem., 10, 325 (1976) http://dx.doi.org/10.1002/qua.56010021110.1002/qua.560100211Search in Google Scholar

[56] T. Ziegler, A. Rauk, Inorg. Chem., 18, 1755 (1979) http://dx.doi.org/10.1021/ic50197a00610.1021/ic50197a006Search in Google Scholar

[57] T. Ziegler, A. Rauk, Inorg. Chem, 18, 1558 (1979) http://dx.doi.org/10.1021/ic50196a03410.1021/ic50196a034Search in Google Scholar

[58] T. Ziegler, A. Rauk, Theor. Chim. Acta, 46, 1 (1977) 10.1007/BF02401406Search in Google Scholar

[59] F. M. Bickelhaupt, N. J. R. van Eikema Hommes, C. Fonseca Guerra, E. J. Baerends, Organometallics, 15, 2923 (1996) http://dx.doi.org/10.1021/om950966x10.1021/om950966xSearch in Google Scholar

[60] C. Kittel, Introduction to Solid State Physics; Wiley: New York, (1986) Search in Google Scholar

[61] T. van der Wijst, C. Fonseca Guerra, M. Swart, F.M. Bickelhaupt, Chem. Phys. Lett., 426, 415 (2006) http://dx.doi.org/10.1016/j.cplett.2006.06.05710.1016/j.cplett.2006.06.057Search in Google Scholar

[62] For a proper comparison between theoretical A-T and G-C base-pairing enthalpies and mass spectrometric values, the latter must be corrected for the fact that they refer to a mixture of isomeric AT and GC complexes, respectively, which causes the experimental values to overestimate the Watson-Crick base-pairing enthalpies by about 1 kcal/mol (see ref [13], [22] and I. K. Yanson, A. B. Teplitsky, L. F. Sukhodup, Biopolymers, 18, 1149 (1979) http://dx.doi.org/10.1021/jp970199a10.1021/jp970199aSearch in Google Scholar

[63] M. Swart, C. Fonseca Guerra, F. M. Bickelhaupt, J. Amer. Chem. Soc., 126, 16718 (2004) http://dx.doi.org/10.1021/ja045276b10.1021/ja045276bSearch in Google Scholar PubMed

Published Online: 2008-3-1
Published in Print: 2008-3-1

© 2008 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-007-0068-y/html
Scroll to top button