Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 29, 2010

C. elegans models of neuromuscular diseases expedite translational research

  • James Sleigh EMAIL logo and David Sattelle

Abstract

The nematode Caenorhabditis elegans is a genetic model organism and the only animal with a complete nervous system wiring diagram. With only 302 neurons and 95 striated muscle cells, a rich array of mutants with defective locomotion and the facility for individual targeted gene knockdown by RNA interference, it lends itself to the exploration of gene function at nerve muscle junctions. With approximately 60% of human disease genes having a C. elegans homologue, there is growing interest in the deployment of lowcost, high-throughput, drug screens of nematode transgenic and mutant strains mimicking aspects of the pathology of devastating human neuromuscular disorders. Here we explore the contributions already made by C. elegans to our understanding of muscular dystrophies (Duchenne and Becker), spinal muscular atrophy, amyotrophic lateral sclerosis, Friedreich’s ataxia, inclusion body myositis and the prospects for contributions to other neuromuscular disorders. A bottleneck to low-cost, in vivo, large-scale chemical library screening for new candidate therapies has been rapid, automated, behavioural phenotyping. Recent progress in quantifying simple swimming (thrashing) movements is making such screening possible and is expediting the translation of drug candidates towards the clinic.

[1] Emery A.E., Population frequencies of inherited neuromuscular diseases — a world survey, Neuromuscul. Disord., 1991, 1, 19–29 10.1016/0960-8966(91)90039-USearch in Google Scholar

[2] Brenner S., The genetics of Caenorhabditis elegans, Genetics, 1974, 77, 71–94 10.1093/genetics/77.1.71Search in Google Scholar

[3] Sulston J.E., Schierenberg E., White J.G., Thomson J.N., The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol., 1983, 100, 64–119 http://dx.doi.org/10.1016/0012-1606(83)90201-410.1016/0012-1606(83)90201-4Search in Google Scholar

[4] White J.G., Southgate E., Thomson J.N., Brenner S., The structure of the nervous system of the nematode Caenorhabditis elegans, Phil. Trans. R. Soc. Lond. B., 1986, 314, 1–340 http://dx.doi.org/10.1098/rstb.1986.005610.1098/rstb.1986.0056Search in Google Scholar PubMed

[5] The C. elegans Sequencing Consortium, Genome sequence of the nematode C. elegans: a platform for investigating biology, Science, 1998, 282, 2012–2018 10.1126/science.282.5396.2012Search in Google Scholar PubMed

[6] Dimitriadi M., Sleigh J.N., Walker A.K., Chang H.C.-H., Sen A., Kalloo G., et al., Conserved genes act as modifiers of invertebrate SMN loss of function defects, PLoS Genet., 2010, (in press) 10.1371/journal.pgen.1001172Search in Google Scholar PubMed PubMed Central

[7] Culetto E., Sattelle D.B., A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes, Hum. Mol. Genet., 2000, 9, 869–877 http://dx.doi.org/10.1093/hmg/9.6.86910.1093/hmg/9.6.869Search in Google Scholar PubMed

[8] Rubin G.M., Yandell M.D., Wortman J.R., Gabor Miklos G.L., Nelson C.R., Hariharan I.K., et al., Comparative genomics of the eukaryotes, Science, 2000, 287, 2204–2215 http://dx.doi.org/10.1126/science.287.5461.220410.1126/science.287.5461.2204Search in Google Scholar PubMed PubMed Central

[9] Harris T.W., Chen N., Cunningham F., Tello-Ruiz M., Antoshechkin I., Bastiani C., et al., WormBase: a multi-species resource for nematode biology and genomics, Nucleic Acids Res., 2004, 32, D411–D417 http://dx.doi.org/10.1093/nar/gkh06610.1093/nar/gkh066Search in Google Scholar PubMed PubMed Central

[10] Wittenburg N., Eimer S., Lakowski B., Rohrig S., Rudolph C., Baumeister R., Presenilin is required for proper morphology and function of neurons in C. elegans, Nature, 2000, 406, 306–309 http://dx.doi.org/10.1038/3501857510.1038/35018575Search in Google Scholar PubMed

[11] Gaud A., Simon J.M., Witzel T., Carre-Pierrat M., Wermuth C.G., Ségalat L., Prednisone reduces muscle degeneration in dystrophin-deficient Caenorhabditis elegans, Neuromuscul. Disord., 2004, 14, 365–370 http://dx.doi.org/10.1016/j.nmd.2004.02.01110.1016/j.nmd.2004.02.011Search in Google Scholar PubMed

[12] Braungart E., Gerlach M., Riederer P., Baumeister R., Hoener M.C., Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screenings, Neurodegener. Dis., 2004, 1, 175–183 http://dx.doi.org/10.1159/00008098310.1159/000080983Search in Google Scholar PubMed

[13] Marvanova M., Nichols C.D., Identification of neuroprotective compounds of Caenorhabditis elegans dopaminergic neurons against 6-OHDA, J. Mol. Neurosci., 2007, 31, 127–137 Search in Google Scholar

[14] Cox G.N., Kusch M., Edgar R.S., Cuticle of Caenorhabditis elegans: its isolation and partial characterization, J. Cell Biol., 1981, 90, 7–17 http://dx.doi.org/10.1083/jcb.90.1.710.1083/jcb.90.1.7Search in Google Scholar PubMed PubMed Central

[15] Artal-Sanz M., de Jong L., Tavernarakis N., Caenorhabditis elegans: a versatile platform for drug discovery, Biotechnol. J., 2006, 1, 1405–1418 http://dx.doi.org/10.1002/biot.20060017610.1002/biot.200600176Search in Google Scholar PubMed

[16] Gravato-Nobre M.J., Nicholas H.R., Nijland R., O’Rourke D., Whittington D.E., Yook K.J., et al., Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum, Genetics, 2005, 171, 1033–1045 http://dx.doi.org/10.1534/genetics.105.04571610.1534/genetics.105.045716Search in Google Scholar PubMed PubMed Central

[17] Partridge F.A., Tearle A.W., Gravato-Nobre M.J., Schafer W.R., Hodgkin J., The C. elegans glycosyltransferase BUS-8 has two distinct and essential roles in epidermal morphogenesis, Dev. Biol., 2008, 317, 549–559 http://dx.doi.org/10.1016/j.ydbio.2008.02.06010.1016/j.ydbio.2008.02.060Search in Google Scholar PubMed

[18] Bounoutas A., O’Hagan R., Chalfie M., The multipurpose 15-protofilament microtubules in C. elegans have specific roles in mechanosensation, Curr. Biol., 2009, 19, 1362–1367 http://dx.doi.org/10.1016/j.cub.2009.06.03610.1016/j.cub.2009.06.036Search in Google Scholar PubMed PubMed Central

[19] Burns A.R., Wallace I.M., Wildenhain J., Tyers M., Giaever G., Bader G.D., et al., A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans, Nat. Chem. Biol., 2010, 6, 549–557 http://dx.doi.org/10.1038/nchembio.38010.1038/nchembio.380Search in Google Scholar PubMed

[20] Pulak R., Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system, Methods Mol. Biol., 2006, 351, 275–286 10.1385/1-59745-151-7:275Search in Google Scholar

[21] Buckingham S.D., Sattelle D.B., Strategies for automated analysis of C. elegans locomotion, Invert. Neurosci., 2008, 8, 121–131 http://dx.doi.org/10.1007/s10158-008-0077-310.1007/s10158-008-0077-3Search in Google Scholar PubMed

[22] Buckingham S.D., Sattelle D.B., Fast, automated measurement of nematode swimming (thrashing) without morphometry, BMC Neurosci., 2009, 10, 84 http://dx.doi.org/10.1186/1471-2202-10-8410.1186/1471-2202-10-84Search in Google Scholar

[23] Jones A.K., Buckingham S.D., Sattelle D.B., Chemistry-to-gene screens in Caenorhabditis elegans, Nat. Rev. Drug Discov., 2005, 4, 321–330 http://dx.doi.org/10.1038/nrd169210.1038/nrd1692Search in Google Scholar

[24] Dimitriadi M., Hart A.C., Neurodegenerative disorders: insights from the nematode Caenorhabditis elegans, Neurobiol. Dis., 2010, 40, 4–11 http://dx.doi.org/10.1016/j.nbd.2010.05.01210.1016/j.nbd.2010.05.012Search in Google Scholar

[25] Koenig M., Hoffman E.P., Bertelson C.J., Monaco A.P., Feener C., Kunkel L.M., Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals, Cell, 1987, 50, 509–517 http://dx.doi.org/10.1016/0092-8674(87)90504-610.1016/0092-8674(87)90504-6Search in Google Scholar

[26] Emery A.E., The muscular dystrophies, Lancet, 2002, 359, 687–695 http://dx.doi.org/10.1016/S0140-6736(02)07815-710.1016/S0140-6736(02)07815-7Search in Google Scholar

[27] Hoffman E.P., Brown R.H., Jr., Kunkel L.M., Dystrophin: the protein product of the Duchenne muscular dystrophy locus, Cell, 1987, 51, 919–928 http://dx.doi.org/10.1016/0092-8674(87)90579-410.1016/0092-8674(87)90579-4Search in Google Scholar

[28] Monaco A.P., Walker A.P., Millwood I., Larin Z., Lehrach H., A yeast artificial chromosome contig containing the complete Duchenne muscular dystrophy gene, Genomics, 1992, 12, 465–473 http://dx.doi.org/10.1016/0888-7543(92)90436-V10.1016/0888-7543(92)90436-VSearch in Google Scholar

[29] Roberts R.G., Coffey A.J., Bobrow M., Bentley D.R., Exon structure of the human dystrophin gene, Genomics, 1993, 16, 536–538 http://dx.doi.org/10.1006/geno.1993.122510.1006/geno.1993.1225Search in Google Scholar

[30] Monaco A.P., Bertelson C.J., Liechti-Gallati S., Moser H., Kunkel L.M., An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus, Genomics, 1988, 2, 90–95 http://dx.doi.org/10.1016/0888-7543(88)90113-910.1016/0888-7543(88)90113-9Search in Google Scholar

[31] Blake D.J., Weir A., Newey S.E., Davies K.E., Function and genetics of dystrophin and dystrophin-related proteins in muscle, Physiol. Rev., 2002, 82, 291–329 10.1152/physrev.00028.2001Search in Google Scholar PubMed

[32] Blake D.J., Hawkes R., Benson M.A., Beesley P.W., Different dystrophinlike complexes are expressed in neurons and glia, J. Cell Biol., 1999, 147, 645–658 http://dx.doi.org/10.1083/jcb.147.3.64510.1083/jcb.147.3.645Search in Google Scholar

[33] Bessou C., Giugia J.B., Franks C.J., Holden-Dye L., Ségalat L., Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission, Neurogenetics, 1998, 2, 61–72 http://dx.doi.org/10.1007/s10048005005310.1007/s100480050053Search in Google Scholar

[34] Giugia J., Gieseler K., Arpagaus M., Ségalat L., Mutations in the dystrophin-like dys-1 gene of Caenorhabditis elegans result in reduced acetylcholinesterase activity, FEBS Lett., 1999, 463, 270–272 http://dx.doi.org/10.1016/S0014-5793(99)01651-810.1016/S0014-5793(99)01651-8Search in Google Scholar

[35] Gieseler K., Bessou C., Ségalat L., Dystrobrevin- and dystrophin-like mutants display similar phenotypes in the nematode Caenorhabditis elegans, Neurogenetics, 1999, 2, 87–90 http://dx.doi.org/10.1007/s10048005005710.1007/s100480050057Search in Google Scholar

[36] Gieseler K., Mariol M.C., Bessou C., Migaud M., Franks C.J., Holden-Dye L., et al., Molecular, genetic and physiological characterisation of dystrobrevin-like (dyb-1) mutants of Caenorhabditis elegans, J. Mol. Biol., 2001, 307, 107–117 http://dx.doi.org/10.1006/jmbi.2000.448010.1006/jmbi.2000.4480Search in Google Scholar

[37] Wagner K.R., Cohen J.B., Huganir R.L., The 87K postsynaptic membrane protein from Torpedo is a protein-tyrosine kinase substrate homologous to dystrophin, Neuron, 1993, 10, 511–522 http://dx.doi.org/10.1016/0896-6273(93)90338-R10.1016/0896-6273(93)90338-RSearch in Google Scholar

[38] Metzinger L., Blake D.J., Squier M.V., Anderson L.V., Deconinck A.E., Nawrotzki R., et al., Dystrobrevin deficiency at the sarcolemma of patients with muscular dystrophy, Hum. Mol. Genet., 1997, 6, 1185–1191 http://dx.doi.org/10.1093/hmg/6.7.118510.1093/hmg/6.7.1185Search in Google Scholar

[39] Sadoulet-Puccio H.M., Rajala M., Kunkel L.M., Dystrobrevin and dystrophin: an interaction through coiled-coil motifs, Proc. Natl. Acad. Sci. USA, 1997, 94, 12413–12418 http://dx.doi.org/10.1073/pnas.94.23.1241310.1073/pnas.94.23.12413Search in Google Scholar

[40] Gieseler K., Abdel-Dayem M., Ségalat L., In vitro interactions of Caenorhabditis elegans dystrophin with dystrobrevin and syntrophin, FEBS Lett., 1999, 461, 59–62 http://dx.doi.org/10.1016/S0014-5793(99)01421-010.1016/S0014-5793(99)01421-0Search in Google Scholar

[41] Sicinski P., Geng Y., Ryder-Cook A.S., Barnard E.A., Darlison M.G., Barnard P.J., The molecular basis of muscular dystrophy in the mdx mouse: a point mutation, Science, 1989, 244, 1578–1580 10.1126/science.2662404Search in Google Scholar PubMed

[42] Megeney L.A., Kablar B., Garrett K., Anderson J.E., Rudnicki M.A., MyoD is required for myogenic stem cell function in adult skeletal muscle, Genes Dev., 1996, 10, 1173–1183 http://dx.doi.org/10.1101/gad.10.10.117310.1101/gad.10.10.1173Search in Google Scholar

[43] Gieseler K., Grisoni K., Ségalat L., Genetic suppression of phenotypes arising from mutations in dystrophin-related genes in Caenorhabditis elegans, Curr. Biol., 2000, 10, 1092–1097 http://dx.doi.org/10.1016/S0960-9822(00)00691-610.1016/S0960-9822(00)00691-6Search in Google Scholar

[44] Grisoni K., Martin E., Gieseler K., Mariol M.C., Ségalat L., Genetic evidence for a dystrophin-glycoprotein complex (DGC) in Caenorhabditis elegans, Gene, 2002, 294, 77–86 http://dx.doi.org/10.1016/S0378-1119(02)00762-X10.1016/S0378-1119(02)00762-XSearch in Google Scholar

[45] Grisoni K., Gieseler K., Mariol M.C., Martin E., Carre-Pierrat M., Moulder G., et al., The stn-1 syntrophin gene of C. elegans is functionally related to dystrophin and dystrobrevin, J. Mol. Biol., 2003, 332, 1037–1046 http://dx.doi.org/10.1016/j.jmb.2003.08.02110.1016/j.jmb.2003.08.021Search in Google Scholar

[46] Kim H., Rogers M.J., Richmond J.E., McIntire S.L., SNF-6 is an acetylcholine transporter interacting with the dystrophin complex in Caenorhabditis elegans, Nature, 2004, 430, 891–896 http://dx.doi.org/10.1038/nature0279810.1038/nature02798Search in Google Scholar

[47] Carre-Pierrat M., Grisoni K., Gieseler K., Mariol M.C., Martin E., Jospin M., The SLO-1 BK channel of Caenorhabditis elegans is critical for muscle function and is involved in dystrophin-dependent muscle dystrophy, J. Mol. Biol., 2006, 358, 387–395 http://dx.doi.org/10.1016/j.jmb.2006.02.03710.1016/j.jmb.2006.02.037Search in Google Scholar

[48] Lecroisey C., Martin E., Mariol M.C., Granger L., Schwab Y., Labouesse M., et al., DYC-1, a protein functionally linked to dystrophin in Caenorhabditis elegans is associated with the dense body, where it interacts with the muscle LIM domain protein ZYX-1, Mol. Biol. Cell, 2008, 19, 785–796 http://dx.doi.org/10.1091/mbc.E07-05-049710.1091/mbc.e07-05-0497Search in Google Scholar

[49] Abraham L.S., Oh H.J., Sancar F., Richmond J.E., Kim H., An alpha-catulin homologue controls neuromuscular function through localization of the dystrophin complex and BK channels in Caenorhabditis elegans, PLoS Genet., 2010, 6, e1001077. http://dx.doi.org/10.1371/journal.pgen.100107710.1371/journal.pgen.1001077Search in Google Scholar

[50] Mariol M.C., Ségalat L., Muscular degeneration in the absence of dystrophin is a calcium-dependent process, Curr. Biol., 2001, 11, 1691–1694 http://dx.doi.org/10.1016/S0960-9822(01)00528-010.1016/S0960-9822(01)00528-0Search in Google Scholar

[51] Gieseler K., Grisoni K., Mariol M.C., Ségalat L., Overexpression of dystrobrevin delays locomotion defects and muscle degeneration in a dystrophin-deficient Caenorhabditis elegans, Neuromuscul. Disord., 2002, 12, 371–377 http://dx.doi.org/10.1016/S0960-8966(01)00330-310.1016/S0960-8966(01)00330-3Search in Google Scholar

[52] Nyamsuren O., Faggionato D., Loch W., Sculze E., Baumeister R., A mutation in CHN-1/CHIP suppresses muscle degeneration in Caenorhabditis elegans, Dev. Biol., 2007, 312, 193–202 http://dx.doi.org/10.1016/j.ydbio.2007.09.03310.1016/j.ydbio.2007.09.033Search in Google Scholar

[53] Wong B.L., Christopher C., Corticosteroids in Duchenne muscular dystrophy: a reappraisal, J. Child Neurol., 2002, 17, 183–190 http://dx.doi.org/10.1177/08830738020170030610.1177/088307380201700306Search in Google Scholar

[54] Carre-Pierrat M., Mariol M.C., Chambonnier L., Laugraud A., Heskia F., Giacomotto J., et al., Blocking of striated muscle degeneration by serotonin in C. elegans, J. Muscle Res. Cell Motil., 2006, 27, 253–258 http://dx.doi.org/10.1007/s10974-006-9070-910.1007/s10974-006-9070-9Search in Google Scholar

[55] Giacomotto J., Pertl C., Borrel C., Walter M.C., Bulst S., Johnsen B., et al., Evaluation of the therapeutic potential of carbonic anhydrase inhibitors in two animal models of dystrophin deficient muscular dystrophy, Hum. Mol. Genet., 2009, 18, 4089–4101 http://dx.doi.org/10.1093/hmg/ddp35810.1093/hmg/ddp358Search in Google Scholar

[56] Supuran C.T., Scozzafava A., Casini A., Carbonic anhydrase inhibitors, Med. Res. Rev., 2003, 23, 146–189 http://dx.doi.org/10.1002/med.1002510.1002/med.10025Search in Google Scholar

[57] Lefebvre S., Burglen L., Reboullet S., Clermont O., Burlet P., Viollet L., et al., Identification and characterization of a spinal muscular atrophy-determining gene, Cell, 1995, 80, 155–165. http://dx.doi.org/10.1016/0092-8674(95)90460-310.1016/0092-8674(95)90460-3Search in Google Scholar

[58] Pearn J.H., The gene frequency of acute Werdnig-Hoffmann disease (SMA type 1). A total population survey in North-East England, J. Med. Genet., 1973, 10, 260–265 http://dx.doi.org/10.1136/jmg.10.3.26010.1136/jmg.10.3.260Search in Google Scholar

[59] Pearn J.H., Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy, J. Med. Genet., 1978, 15, 409–413 http://dx.doi.org/10.1136/jmg.15.6.40910.1136/jmg.15.6.409Search in Google Scholar

[60] Pellizzoni L., Kataoka N., Charroux B., Dreyfuss G., A novel function for SMN, the spinal muscular atrophy disease gene product, in premRNA splicing, Cell, 1998, 95, 615–624 http://dx.doi.org/10.1016/S0092-8674(00)81632-310.1016/S0092-8674(00)81632-3Search in Google Scholar

[61] Pagliardini S., Giavazzi A., Setola V., Lizier C., Di Luca M., DeBiasi S., et al., Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord, Hum. Mol. Genet., 2000, 9, 47–56 http://dx.doi.org/10.1093/hmg/9.1.4710.1093/hmg/9.1.47Search in Google Scholar PubMed

[62] Jablonka S., Wiese S., Sendtner M., Axonal defects in mouse models of motoneuron disease, J. Neurobiol., 2004, 58, 272–286 http://dx.doi.org/10.1002/neu.1031310.1002/neu.10313Search in Google Scholar

[63] Pellizzoni L., Charroux B., Rappsilber J., Mann M., Dreyfuss G., A functional interaction between the survival motor neuron complex and RNA polymerase II, J. Cell Biol., 2001, 152, 75–85 http://dx.doi.org/10.1083/jcb.152.1.7510.1083/jcb.152.1.75Search in Google Scholar

[64] Pellizzoni L., Baccon J., Charroux B., Dreyfuss G., The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1, Curr. Biol., 2001, 11, 1079–1088 http://dx.doi.org/10.1016/S0960-9822(01)00316-510.1016/S0960-9822(01)00316-5Search in Google Scholar

[65] Fischer U., Liu Q., Dreyfuss G., The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis, Cell, 1997, 90, 1023–1029 http://dx.doi.org/10.1016/S0092-8674(00)80368-210.1016/S0092-8674(00)80368-2Search in Google Scholar

[66] Pellizzoni L., Yong J., Dreyfuss G., Essential role for the SMN complex in the specificity of snRNP assembly, Science, 2002, 298, 1775–1779 http://dx.doi.org/10.1126/science.107496210.1126/science.1074962Search in Google Scholar PubMed

[67] Talbot K., Ponting C.P., Theodosiou A.M., Rodrigues N.R., Surtees R., Mountford R., et al., Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism?, Hum. Mol. Genet., 1997, 6, 497–500 http://dx.doi.org/10.1093/hmg/6.3.49710.1093/hmg/6.3.497Search in Google Scholar PubMed

[68] Miguel-Aliaga I., Culetto E., Walker D.S., Baylis H.A., Sattelle D.B., Davies K.E., The Caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability, Hum. Mol. Genet., 1999, 8, 2133–2143 http://dx.doi.org/10.1093/hmg/8.12.213310.1093/hmg/8.12.2133Search in Google Scholar PubMed

[69] Bertrandy S., Burlet P., Clermont O., Huber C., Fondrat C., Thierry-Mieg D., et al., The RNA-binding properties of SMN: deletion analysis of the zebrafish orthologue defines domains conserved in evolution, Hum. Mol. Genet., 1999, 8, 775–782 http://dx.doi.org/10.1093/hmg/8.5.77510.1093/hmg/8.5.775Search in Google Scholar PubMed

[70] Burt E.C., Towers P.R., Sattelle D.B., Caenorhabditis elegans in the study of SMN-interacting proteins: a role for SMI-1, an orthologue of human Gemin2 and the identification of novel components of the SMN complex, Invert. Neurosci., 2006, 6, 145–159 http://dx.doi.org/10.1007/s10158-006-0027-x10.1007/s10158-006-0027-xSearch in Google Scholar PubMed

[71] Lorson C.L., Strasswimmer J., Yao J.M., Baleja J.D., Hahnen E., Wirth B., et al., SMN oligomerization defect correlates with spinal muscular atrophy severity, Nat. Genet., 1998, 19, 63–66 http://dx.doi.org/10.1038/ng0598-6310.1038/ng0598-63Search in Google Scholar PubMed

[72] Briese M., Esmaeili B., Fraboulet S., Burt E.C., Christodoulou S., Towers P.R., Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan, Hum. Mol. Genet., 2009, 18, 97–104 http://dx.doi.org/10.1093/hmg/ddn32010.1093/hmg/ddn320Search in Google Scholar

[73] Gavrilina T.O., McGovern V.L., Workman E., Crawford T.O., Gogliotti R.G., DiDonato C.J., et al., Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect, Hum. Mol. Genet., 2008, 17, 1063–1075 http://dx.doi.org/10.1093/hmg/ddm37910.1093/hmg/ddm379Search in Google Scholar

[74] Alonso A., Logroscino G., Jick S.S., Hernan M.A., Incidence and lifetime risk of motor neuron disease in the United Kingdom: a populationbased study, Eur. J. Neurol., 2009, 16, 745–751 http://dx.doi.org/10.1111/j.1468-1331.2009.02586.x10.1111/j.1468-1331.2009.02586.xSearch in Google Scholar

[75] Mulder D.W., Kurland L.T., Offord K.P., Beard C.M., Familial adult motor neuron disease: amyotrophic lateral sclerosis, Neurology, 1986, 36, 511–517 10.1212/WNL.36.4.511Search in Google Scholar

[76] O’Toole O., Traynor B.J., Brennan P., Sheehan C., Frost E., Corr B., et al., Epidemiology and clinical features of amyotrophic lateral sclerosis in Ireland between 1995 and 2004, J. Neurol. Neurosurg. Psychiatry, 2008, 79, 30–32 http://dx.doi.org/10.1136/jnnp.2007.11778810.1136/jnnp.2007.117788Search in Google Scholar

[77] Rosen D.R., Siddique T., Patterson D., Figlewicz D.A., Sapp P., Hentati A., et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, 1993, 362, 59–62 http://dx.doi.org/10.1038/362059a010.1038/362059a0Search in Google Scholar

[78] Cudkowicz M.E., McKenna-Yasek D., Sapp P.E., Chin W., Geller B., Hayden D.L., et al., Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis, Ann. Neurol., 1997, 41, 210–221 http://dx.doi.org/10.1002/ana.41041021210.1002/ana.410410212Search in Google Scholar

[79] McCord J.M., Fridovich I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem., 1969, 244, 6049–6055 10.1016/S0021-9258(18)63504-5Search in Google Scholar

[80] Fridovich I., Superoxide dismutases, Annu. Rev. Biochem., 1975, 44, 147–159 http://dx.doi.org/10.1146/annurev.bi.44.070175.00105110.1146/annurev.bi.44.070175.001051Search in Google Scholar PubMed

[81] Gurney M.E., Pu H., Chiu A.Y., Dal Canto M.C., Polchow C.Y., Alexander D.D. et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, 1994, 264, 1772–1775 http://dx.doi.org/10.1126/science.820925810.1126/science.8209258Search in Google Scholar PubMed

[82] Reaume A.G., Elliott J.L., Hoffman E.K., Kowall N.W., Ferrante R.J., Siwek D.F., et al., Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury, Nat. Genet., 1996, 13, 43–47 http://dx.doi.org/10.1038/ng0596-4310.1038/ng0596-43Search in Google Scholar PubMed

[83] Larsen P.L., Aging and resistance to oxidative damage in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 1993, 90, 8905–8909 http://dx.doi.org/10.1073/pnas.90.19.890510.1073/pnas.90.19.8905Search in Google Scholar PubMed PubMed Central

[84] Yanase S., Onodera A., Tedesco P., Johnson T.E., Ishii N., SOD-1 deletions in Caenorhabditis elegans alter the localization of intracellular reactive oxygen species and show molecular compensation, J. Gerontol. A Biol. Sci. Med. Sci., 2009, 64, 530–539 10.1093/gerona/glp020Search in Google Scholar PubMed

[85] Vanfleteren J.R., Oxidative stress and ageing in Caenorhabditis elegans, Biochem. J., 1993, 292, 605–608 10.1042/bj2920605Search in Google Scholar PubMed PubMed Central

[86] Yen K., Patel H.B., Lublin A.L., Mobbs C.V., SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, but mutational inactivation of SOD-1 reduces life extension by cold, Mech. Ageing Dev., 2009, 130, 173–178 http://dx.doi.org/10.1016/j.mad.2008.11.00310.1016/j.mad.2008.11.003Search in Google Scholar PubMed

[87] Yang W., Li J., Hekimi S., A Measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans, Genetics, 2007, 177, 2063–2074 http://dx.doi.org/10.1534/genetics.107.08078810.1534/genetics.107.080788Search in Google Scholar PubMed PubMed Central

[88] Oeda T., Shimohama S., Kitagawa N., Kohno R., Imura T., Shibasaki H., et al., Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans, Hum. Mol. Genet., 2001, 10, 2013–2023 http://dx.doi.org/10.1093/hmg/10.19.201310.1093/hmg/10.19.2013Search in Google Scholar PubMed

[89] Witan H., Kern A., Koziollek-Drechsler I., Wade R., Behl C., Clement A.M., Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation, Hum. Mol. Genet., 2008, 17, 1373–1385 http://dx.doi.org/10.1093/hmg/ddn02510.1093/hmg/ddn025Search in Google Scholar PubMed

[90] Wang J., Farr G.W., Hall D.H., Li F., Furtak K., Dreier L., et al., An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans, PLoS Genet., 2009, 5, e1000350 http://dx.doi.org/10.1371/journal.pgen.100035010.1371/journal.pgen.1000350Search in Google Scholar PubMed PubMed Central

[91] Gidalevitz T., Krupinski T., Garcia S., Morimoto R.I., Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity, PLoS Genet., 2009, 5, e1000399 http://dx.doi.org/10.1371/journal.pgen.100039910.1371/journal.pgen.1000399Search in Google Scholar PubMed PubMed Central

[92] Gidalevitz, T., Ben-Zvi A., Ho K.H., Brignull H.R., Morimoto R.I., Progressive disruption of cellular protein folding in models of polyglutamine diseases, Science, 2006, 311, 1471–1474 http://dx.doi.org/10.1126/science.112451410.1126/science.1124514Search in Google Scholar PubMed

[93] Arai T., Hasegawa M., Akiyama H., Ikeda K., Nonaka T., Mori H., et al., TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis, Biochem. Biophys. Res. Commun., 2006, 351, 602–611 http://dx.doi.org/10.1016/j.bbrc.2006.10.09310.1016/j.bbrc.2006.10.093Search in Google Scholar PubMed

[94] Neumann M., Sampathu D.M., Kwong L.K., Truax A.C., Micsenyi M.C., Chou T.T., et al., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis, Science, 2006, 314, 130–133 http://dx.doi.org/10.1126/science.113410810.1126/science.1134108Search in Google Scholar PubMed

[95] Mackenzie I.R., Bigio E.H., Ince P.G., Geser F., Neumann M., Cairns N.J., et al., Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations, Ann. Neurol., 2007, 61, 427–434 http://dx.doi.org/10.1002/ana.2114710.1002/ana.21147Search in Google Scholar PubMed

[96] Lagier-Tourenne C., Cleveland D.W., Rethinking ALS: the FUS about TDP-43, Cell, 2009, 136, 1001–1004 http://dx.doi.org/10.1016/j.cell.2009.03.00610.1016/j.cell.2009.03.006Search in Google Scholar PubMed PubMed Central

[97] Ou S.H., Wu F., Harrich D., Garcia-Martinez L.F., Gaynor R.B., Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs, J. Virol., 1995, 69, 3584–3596 10.1128/jvi.69.6.3584-3596.1995Search in Google Scholar PubMed PubMed Central

[98] Buratti E., Baralle F.E., Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9, J. Biol. Chem., 2001, 276, 36337–36343 http://dx.doi.org/10.1074/jbc.M10423620010.1074/jbc.M104236200Search in Google Scholar PubMed

[99] Buratti E., Dork T., Zuccato E., Pagani F., Romano M., Baralle F.E., Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping, EMBO J., 2001, 20, 1774–1784 http://dx.doi.org/10.1093/emboj/20.7.177410.1093/emboj/20.7.1774Search in Google Scholar PubMed PubMed Central

[100] Strong M.J., Volkening K., Hammond R., Yang W., Strong W., Leystra-Lantz C., et al., TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein, Mol. Cell. Neurosci., 2007, 35, 320–327 http://dx.doi.org/10.1016/j.mcn.2007.03.00710.1016/j.mcn.2007.03.007Search in Google Scholar PubMed

[101] Chen-Plotkin A.S., Lee V.M., Trojanowski J.Q., TAR DNA-binding protein 43 in neurodegenerative disease, Nat. Rev. Neurol., 2010, 6, 211–220 http://dx.doi.org/10.1038/nrneurol.2010.1810.1038/nrneurol.2010.18Search in Google Scholar PubMed PubMed Central

[102] Wang H.Y., Wang I.F., Bose J., Shen C.K., Structural diversity and functional implications of the eukaryotic TDP gene family, Genomics, 2004, 83, 130–139 http://dx.doi.org/10.1016/S0888-7543(03)00214-310.1016/S0888-7543(03)00214-3Search in Google Scholar

[103] Ayala Y.M., Pantano S., D’Ambrogio A., Buratti E., Brindisi A., Marchetti C., et al., Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function, J. Mol. Biol., 2005, 348, 575–588 http://dx.doi.org/10.1016/j.jmb.2005.02.03810.1016/j.jmb.2005.02.038Search in Google Scholar

[104] Ash P.E., Zhang Y.J., Roberts C.M., Saldi T., Hutter H., Buratti E., et al., Neurotoxic effects of TDP-43 overexpression in C. elegans, Hum. Mol. Genet., 2010, 19, 3206–3218 http://dx.doi.org/10.1093/hmg/ddq23010.1093/hmg/ddq230Search in Google Scholar

[105] Kim S.K., Lund J., Kiraly M., Duke K., Jiang M., Stuart J.M., et al., A gene expression map for Caenorhabditis elegans, Science, 2001, 293, 2087–2092 http://dx.doi.org/10.1126/science.106160310.1126/science.1061603Search in Google Scholar

[106] Harding A.E., Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features, Brain, 1981, 104, 589–620 http://dx.doi.org/10.1093/brain/104.3.58910.1093/brain/104.3.589Search in Google Scholar

[107] Campuzano V., Montermini L., Molto M.D., Pianese L., Cossee M., Cavalcanti F., et al., Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion, Science, 1996, 271, 1423–1427 http://dx.doi.org/10.1126/science.271.5254.142310.1126/science.271.5254.1423Search in Google Scholar

[108] Bidichandani S.I., Ashizawa T., Patel P.I., The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure, Am. J. Hum. Genet., 1998, 62, 111–121 http://dx.doi.org/10.1086/30168010.1086/301680Search in Google Scholar

[109] Ohshima K., Montermini L., Wells R.D., Pandolfo M., Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo, J. Biol. Chem., 1998, 273, 14588–14595 http://dx.doi.org/10.1074/jbc.273.23.1458810.1074/jbc.273.23.14588Search in Google Scholar

[110] Grabczyk E., Usdin K., The GAA*TTC triplet repeat expanded in Friedreich’s ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner, Nucleic Acids Res., 2000, 28, 2815–2822 http://dx.doi.org/10.1093/nar/28.14.281510.1093/nar/28.14.2815Search in Google Scholar

[111] Cossee M., Durr A., Schmitt M., Dahl N., Trouillas P., Allinson P., et al., Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes, Ann. Neurol., 1999, 45, 200–206 http://dx.doi.org/10.1002/1531-8249(199902)45:2<200::AID-ANA10>3.0.CO;2-U10.1002/1531-8249(199902)45:2<200::AID-ANA10>3.0.CO;2-USearch in Google Scholar

[112] De Castro M., Garcia-Planells J., Monros E., Canizares J., Vazquez-Manrique R., Vilchez J.J., et al., Genotype and phenotype analysis of Friedreich’s ataxia compound heterozygous patients, Hum. Genet., 2000, 106, 86–92 http://dx.doi.org/10.1007/s00439990020110.1007/s004399900201Search in Google Scholar PubMed

[113] Delatycki M.B., Williamson R., Forrest S.M., Friedreich ataxia: an overview, J. Med. Genet., 2000, 37, 1–8 http://dx.doi.org/10.1136/jmg.37.1.110.1136/jmg.37.1.1Search in Google Scholar PubMed PubMed Central

[114] Campuzano V., Montermini L., Lutz Y., Cova L., Hindelang C., Jiralerspong S., et al., Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes, Hum. Mol. Genet., 1997, 6, 1771–1780 http://dx.doi.org/10.1093/hmg/6.11.177110.1093/hmg/6.11.1771Search in Google Scholar PubMed

[115] Koutnikova H., Campuzano V., Foury F., Dollé P., Cazzalini O., Koenig M., Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin, Nat. Genet., 1997, 16, 345–351 http://dx.doi.org/10.1038/ng0897-34510.1038/ng0897-345Search in Google Scholar PubMed

[116] Babcock M., de Silva D., Oaks R., Davis-Kaplan S., Jiralerspong S., Montermini L., et al., Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin, Science, 1997, 276, 1709–1712 http://dx.doi.org/10.1126/science.276.5319.170910.1126/science.276.5319.1709Search in Google Scholar PubMed

[117] Pandolfo M., Pastore A., The pathogenesis of Friedreich ataxia and the structure and function of frataxin, J. Neurol., 2009, 256, 9–17 http://dx.doi.org/10.1007/s00415-009-1003-210.1007/s00415-009-1003-2Search in Google Scholar PubMed

[118] Cossee M., Puccio H., Gansmuller A., Koutnikova H., Dierich A., LeMeur M., et al., Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation, Hum. Mol. Genet., 2000, 9, 1219–1226 http://dx.doi.org/10.1093/hmg/9.8.121910.1093/hmg/9.8.1219Search in Google Scholar PubMed

[119] Vazquez-Manrique R.P., Gonzalez-Cabo P., Ros S., Aziz H., Baylis H.A., Palau F., Reduction of Caenorhabditis elegans frataxin increases sensitivity to oxidative stress, reduces lifespan, and causes lethality in a mitochondrial complex II mutant, FASEB J., 2006, 20, 172–174 10.1096/fj.05-4212fjeSearch in Google Scholar PubMed

[120] Blumenthal T., Evans D., Link C.D., Guffanti A., Lawson D., Thierry-Mieg J., et al., A global analysis of Caenorhabditis elegans operons, Nature, 2002, 417, 851–854 http://dx.doi.org/10.1038/nature0083110.1038/nature00831Search in Google Scholar PubMed

[121] Vazquez-Manrique R.P., Gonzalez-Cabo P., Ortiz-Martin I., Ros S., Baylis H.A., Palau F., The frataxin-encoding operon of Caenorhabditis elegans shows complex structure and regulation, Genomics, 2007, 89, 392–401 http://dx.doi.org/10.1016/j.ygeno.2006.10.00710.1016/j.ygeno.2006.10.007Search in Google Scholar PubMed

[122] Ventura N., Rea S., Henderson S.T., Condo I., Johnson T.E., Testi R., Reduced expression of frataxin extends the lifespan of Caenorhabditis elegans, Aging Cell, 2005, 4, 109–112 http://dx.doi.org/10.1111/j.1474-9726.2005.00149.x10.1111/j.1474-9726.2005.00149.xSearch in Google Scholar PubMed

[123] Ventura N., Rea S.L., Handerson S.T., Condo I., Testi R., Johnson T.E., C. elegans as a model for Friedreich Ataxia, FASEB J., 2006, 20, 1029–1030 http://dx.doi.org/10.1096/fj.06-0505ufm10.1096/fj.06-0505ufmSearch in Google Scholar PubMed

[124] Zarse K., Schulz T.J., Birringer M., Ristow M., Impaired respiration is positively correlated with decreased life span in Caenorhabditis elegans models of Friedreich Ataxia, FASEB J., 2007, 21, 1271–1275 http://dx.doi.org/10.1096/fj.06-6994com10.1096/fj.06-6994comSearch in Google Scholar PubMed

[125] Rea S.L., Ventura N., Johnson T.E., Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans, PLoS Biol., 2007, 5, e259 http://dx.doi.org/10.1371/journal.pbio.005025910.1371/journal.pbio.0050259Search in Google Scholar PubMed PubMed Central

[126] Gonzalez-Cabo P., Ros S., Palau F., Flavin adenine dinucleotide rescues the phenotype of frataxin deficiency, PLoS One, 2010, 5, e8872 http://dx.doi.org/10.1371/journal.pone.000887210.1371/journal.pone.0008872Search in Google Scholar PubMed PubMed Central

[127] Askanas V., Engel W.K., Inclusion-body myositis and myopathies: different etiologies, possibly similar pathogenic mechanisms, Curr. Opin. Neurol., 2002, 15, 525–531 http://dx.doi.org/10.1097/00019052-200210000-0000210.1097/00019052-200210000-00002Search in Google Scholar PubMed

[128] Badrising U.A., Maat-Schieman M.L., van Houwelingen J.C., van Doorn P.A., van Duinen S.G., van Engelen B.G., et al., Inclusion body myositis. Clinical features and clinical course of the disease in 64 patients, J. Neurol., 2005, 252, 1448–1454 http://dx.doi.org/10.1007/s00415-005-0884-y10.1007/s00415-005-0884-ySearch in Google Scholar PubMed

[129] Neville H.E., Baumbach L.L., Ringel S.P., Russo L.S., Jr., Sujansky E., Garcia C.A., Familial inclusion body myositis: evidence for autosomal dominant inheritance, Neurology, 1992, 42, 897–902 10.1212/WNL.42.4.897Search in Google Scholar PubMed

[130] Askanas V., Engel W.K., Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis, Curr. Opin. Rheumatol., 2007, 19, 550–559 http://dx.doi.org/10.1097/BOR.0b013e3282efdc7c10.1097/BOR.0b013e3282efdc7cSearch in Google Scholar PubMed

[131] Dalakas M.C., Koffman B., Fujii M., Spector S., Sivakumar K., Cupler E., A controlled study of intravenous immunoglobulin combined with prednisone in the treatment of IBM, Neurology, 2001, 56, 323–327 10.1212/WNL.56.3.323Search in Google Scholar

[132] Lindberg C., Trysberg E., Tarkowski A., Oldfors A., Anti-T-lymphocyte globulin treatment in inclusion body myositis: a randomized pilot study, Neurology, 2003, 61, 260–262 10.1212/01.WNL.0000071852.27182.C7Search in Google Scholar

[133] Barohn R.J., Herbelin L., Kissel J.T., King W., McVey A.L., Saperstein D.S., et al., Pilot trial of etanercept in the treatment of inclusion-body myositis, Neurology, 2006, 66, S123–S124 http://dx.doi.org/10.1212/01.wnl.0000192258.32408.5410.1212/01.wnl.0000192258.32408.54Search in Google Scholar PubMed

[134] Rebolledo D.L., Minniti A.N., Grez P.M., Fadic R., Kohn R., Inestrosa N.C., Inclusion body myositis: a view from the Caenorhabditis elegans muscle, Mol. Neurobiol., 2008, 38, 178–198 http://dx.doi.org/10.1007/s12035-008-8041-010.1007/s12035-008-8041-0Search in Google Scholar PubMed

[135] Kang J., Lemaire H.G., Unterbeck A., Salbaum J.M., Masters C.L., Grzeschik K.H., et al., The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature, 1987, 325, 733–736 http://dx.doi.org/10.1038/325733a010.1038/325733a0Search in Google Scholar PubMed

[136] Askanas V., Engel W.K., Alvarez R.B., Light and electron microscopic localization of ß-amyloid protein in muscle biopsies of patients with inclusion-body myositis, Am. J. Pathol., 1992, 141, 31–36 Search in Google Scholar

[137] Vitte J., Fassier C., Tiziano F.D., Dalard C., Soave S., Roblot N., et al., Refined characterization of the expression and stability of the SMN gene products, Am. J. Pathol., 2007, 171, 1269–1280 http://dx.doi.org/10.2353/ajpath.2007.07039910.2353/ajpath.2007.070399Search in Google Scholar PubMed PubMed Central

[138] Morgan C., Colombres M., Nunez M.T., Inestrosa N.C., Structure and function of amyloid in Alzheimer’s disease, Prog. Neurobiol., 2004, 74, 323–349 http://dx.doi.org/10.1016/j.pneurobio.2004.10.00410.1016/j.pneurobio.2004.10.004Search in Google Scholar PubMed

[139] Gralle M., Ferreira S.T., Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts, Prog. Neurobiol., 2007, 82, 11–32 http://dx.doi.org/10.1016/j.pneurobio.2007.02.00110.1016/j.pneurobio.2007.02.001Search in Google Scholar PubMed

[140] Daigle I., Li C., apl-1, a Caenorhabditis elegans gene encoding a protein related to the human ß-amyloid protein precursor, Proc. Natl. Acad. Sci. USA, 1993, 90, 12045–12049 http://dx.doi.org/10.1073/pnas.90.24.1204510.1073/pnas.90.24.12045Search in Google Scholar PubMed PubMed Central

[141] Hornsten A., Lieberthal J., Fadia S., Malins R., Ha L., Xu X., et al., APL-1, a Caenorhabditis elegans protein related to the human ß-amyloid precursor protein, is essential for viability, Proc. Natl. Acad. Sci. USA, 2007, 104, 1971–1976 http://dx.doi.org/10.1073/pnas.060399710410.1073/pnas.0603997104Search in Google Scholar PubMed PubMed Central

[142] Teschendorf D., Link C.D., What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases?, Mol. Neurodegener., 2009, 4, 38 http://dx.doi.org/10.1186/1750-1326-4-3810.1186/1750-1326-4-38Search in Google Scholar PubMed PubMed Central

[143] Link C.D., Expression of human ß-amyloid peptide in transgenic Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 1995, 92, 9368–9372 http://dx.doi.org/10.1073/pnas.92.20.936810.1073/pnas.92.20.9368Search in Google Scholar

[144] Link C.D., Taft A., Kapulkin V., Duke K., Kim S., Fei Q., et al., Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model, Neurobiol. Aging, 2003, 24, 397–413 http://dx.doi.org/10.1016/S0197-4580(02)00224-510.1016/S0197-4580(02)00224-5Search in Google Scholar

[145] Wu Y., Wu Z., Butko P., Christen Y., Lambert M.P., Klein W.L., et al., Amyloid-ß-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans, J. Neurosci., 2006, 26, 13102–13113 http://dx.doi.org/10.1523/JNEUROSCI.3448-06.200610.1523/JNEUROSCI.3448-06.2006Search in Google Scholar

[146] McColl G., Roberts B.R., Gunn A.P., Perez K.A., Tew D.J., Masters C.L., et al., The Caenorhabditis elegans Aβ1-42 model of Alzheimer disease predominantly expresses Aβ3-42, J. Biol. Chem., 2009, 284, 22697–22702 http://dx.doi.org/10.1074/jbc.C109.02851410.1074/jbc.C109.028514Search in Google Scholar

[147] Fay D.S., Fluet A., Johnson C.J., Link C.D., In vivo aggregation of ß-amyloid peptide variants, J. Neurochem., 1998, 71, 1616–1625 http://dx.doi.org/10.1046/j.1471-4159.1998.71041616.x10.1046/j.1471-4159.1998.71041616.xSearch in Google Scholar

[148] Link C.D., Johnson C.J., Fonte V., Paupard M., Hall D.H., Styren S., et al., Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34, Neurobiol. Aging, 2001, 22, 217–226 http://dx.doi.org/10.1016/S0197-4580(00)00237-210.1016/S0197-4580(00)00237-2Search in Google Scholar

[149] Minniti A.N., Rebolledo D.L., Grez P.M., Fadic R., Aldunate R., Volitakis I., et al., Intracellular amyloid formation in muscle cells of Aß-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification, Mol. Neurodegener., 2009, 4, 2 http://dx.doi.org/10.1186/1750-1326-4-210.1186/1750-1326-4-2Search in Google Scholar

[150] Fonte V., Kapulkin V., Taft A., Fluet A., Friedman D., Link C.D., Interaction of intracellular ß amyloid peptide with chaperone proteins, Proc. Natl. Acad. Sci. USA, 2002, 99, 9439–9444 http://dx.doi.org/10.1073/pnas.15231399910.1073/pnas.152313999Search in Google Scholar

[151] Link C.D., Cypser J.R., Johnson C.J., Johnson T.E., Direct observation of stress response in Caenorhabditis elegans using a reporter transgene, Cell Stress Chaperones, 1999, 4, 235–242 http://dx.doi.org/10.1379/1466-1268(1999)004<0235:DOOSRI>2.3.CO;210.1379/1466-1268(1999)004<0235:DOOSRI>2.3.CO;2Search in Google Scholar

[152] Cohen E., Bieschke J., Perciavalle R.M., Kelly J.W., Dillin A., Opposing activities protect against age-onset proteotoxicity, Science, 2006, 313, 1604–1610 http://dx.doi.org/10.1126/science.112464610.1126/science.1124646Search in Google Scholar

[153] Steinkraus K.A., Smith E.D., Davis C., Carr D., Pendergrass W.R., Sutphin G.L., et al., Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans, Aging Cell, 2008, 7, 394–404 http://dx.doi.org/10.1111/j.1474-9726.2008.00385.x10.1111/j.1474-9726.2008.00385.xSearch in Google Scholar

[154] Hassan W.M., Merin D.A., Fonte V., Link C.D., AIP-1 ameliorates ß-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer’s disease model, Hum. Mol. Genet., 2009, 18, 2739–2747 http://dx.doi.org/10.1093/hmg/ddp20910.1093/hmg/ddp209Search in Google Scholar

[155] Drake J., Link C.D., Butterfield D.A., Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid ß-peptide (1-42) in a transgenic Caenorhabditis elegans model, Neurobiol. Aging, 2003, 24, 415–420 http://dx.doi.org/10.1016/S0197-4580(02)00225-710.1016/S0197-4580(02)00225-7Search in Google Scholar

[156] Fonte V., Kipp D.R., Yerg J. III, Merin D., Forrestal M., Wagner E., et al., Suppression of in vivo ß-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein, J. Biol. Chem., 2008, 283, 784–791 http://dx.doi.org/10.1074/jbc.M70333920010.1074/jbc.M703339200Search in Google Scholar PubMed

[157] Wu Y., Cao Z., Klein W.L., Luo Y., Heat shock treatment reduces ß amyloid toxicity in vivo by diminishing oligomers, Neurobiol. Aging, 2010, 31, 1055–1058 http://dx.doi.org/10.1016/j.neurobiolaging.2008.07.01310.1016/j.neurobiolaging.2008.07.013Search in Google Scholar PubMed PubMed Central

[158] Florez-McClure M.L., Hohsfield L.A., Fonte G., Bealor M.T., Link C.D., Decreased insulin-receptor signaling promotes the autophagic degradation of ß-amyloid peptide in C. elegans, Autophagy, 2007, 3, 569–580 10.4161/auto.4776Search in Google Scholar PubMed

[159] Dosanjh L.E., Brown M.K., Rao G., Link C.D., Luo Y., Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-ß, J. Alzheimers Dis., 2010, 19, 681–690 10.3233/JAD-2010-1267Search in Google Scholar PubMed

[160] Le Bars P.L., Katz M.M., Berman N., Itil T.M., Freedman A.M., Schatzberg A.F., A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group, JAMA, 1997, 278, 1327–1332 http://dx.doi.org/10.1001/jama.278.16.132710.1001/jama.278.16.1327Search in Google Scholar PubMed

[161] Le Bars P.L., Kieser M., Itil K.Z., A 26-week analysis of a double-blind, placebo-controlled trial of the Ginkgo biloba extract EGb 761 in dementia, Dement. Geriatr. Cogn. Disord., 2000, 11, 230–237 http://dx.doi.org/10.1159/00001724210.1159/000017242Search in Google Scholar PubMed

[162] Mix J.A., Crews, W.D., Jr., A double-blind, placebo-controlled, randomized trial of Ginkgo biloba extract EGb 761 in a sample of cognitively intact older adults: neuropsychological findings, Hum. Psychopharmacol., 2002, 17, 267–277 http://dx.doi.org/10.1002/hup.41210.1002/hup.412Search in Google Scholar PubMed

[163] Arya U., Dwivedi H., Subramaniam J.R., Reserpine ameliorates Aß toxicity in the Alzheimer’s disease model in Caenorhabditis elegans, Exp. Gerontol., 2009, 44, 462–466 http://dx.doi.org/10.1016/j.exger.2009.02.01010.1016/j.exger.2009.02.010Search in Google Scholar PubMed

[164] Kaas B., Vaidya A.R., Leatherman A., Schleidt S., Kohn R.E., Technical report: exploring the basis of congenital myasthenic syndromes in an undergraduate course, using the model organism, Caenorhabditis elegans, Invert. Neurosci., 2010, DOI: 10.1007/s10158-010-0101-2 10.1007/s10158-010-0101-2Search in Google Scholar PubMed

[165] Lee R.Y., Lobel L., Hengartner M., Horvitz H.R., Avery L., Mutations in the α1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans, EMBO J., 1997, 16, 6066–6076 http://dx.doi.org/10.1093/emboj/16.20.606610.1093/emboj/16.20.6066Search in Google Scholar PubMed PubMed Central

[166] Rodrigues A.J., Coppola G., Santos C., Costa Mdo C., Ailion M., Sequeiros J., et al., Functional genomics and biochemical characterization of the C. elegans orthologue of the Machado-Joseph disease protein ataxin-3, FASEB J., 2007, 21, 1126–1136 http://dx.doi.org/10.1096/fj.06-7002com10.1096/fj.06-7002comSearch in Google Scholar PubMed

Published Online: 2010-9-29
Published in Print: 2010-9-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.2478/v10134-010-0032-9/html
Scroll to top button